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1. Introduction. The relationship of the inequalities 

(1.1) Hf,x,hta) £A(ftxth,p) 

and 

(1.2) /(ƒ, x,h%a) Z: A(f, x, h, ft) 

to general convex and concave functions respectively has been treated 
by Radó [l] .1 In his and in this paper, f(x) denotes a positive con­
tinuous function defined on a given open interval X\<X<X<L. In 
!(ƒ, x, h, a) and A (J, x, h, /3), defined by Radó [l, pp. 267, 268] as 
follows: 

r i rh lUa 

/(ƒ, x, ht a) = I — J f(x + Ö-tfÉj , if a ^ 0, 

/(ƒ, x, A, 0) - exp £ — ƒ ^log f(x + 0 # ] , 

r/(x - hy + f(x + h)ni" 
;!(ƒ.* * , « - [ - ^ y ^ i-J , if 0*0, 

(1.4) Aft h ^ riog f{x -h)+ log fix + *)-] 
A(f9 x, h, 0) = exp 

- [ƒ(*- h)fix+h)Y'\ 
x and h satisfy the inequalities Xi<x—h<x+h<X2; a and j8 are real 
exponents. 

To enable us to express his definitions and results concisely, we de­
fine four classes oîfix) as follows: 

Let K be the class of all fix) which are convex on xi<x<x2. 
Let Kap be the class of all /(^) which satisfy the inequality (1.1). 
Let K* be the class of all fix) which are concave on X\<x<x%. 
Let K*ff be the class of all fix) which satisfy the inequality (1.2). 

Then the four sets of pairs (a, j3) which Radó defined [l, pp. 269, 281] 
can be defined by the statements: 

Let E be the set of all pairs (a, /3) for which KC.Ka$. 
Let E be the set of all pairs (a, /3) for which KapCK. 
Let £* be the set of all pairs (a, j3) for which K*C.K%. 
Received by the editors August 24, 1945. 
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Let E* be the set of all pairs (<*, /?) for which KtpCK*. 
We also use two of the functions of a defined by Radó [l , p. 269, 

footnote]: 

(1.5) 

yf/2 

fa 

= fo(a) = 

= >t>z(a) « 

(a + 2)/3, 

/0 , 

) « log 2 

) log (a + 1) ' 

— oo < a < + oo, 

- oo < a g - 1, 

— 1 -< a < oo, a y* 0, 

log 2, a * 0, 

to give his theorems [l , pp. 269, 281, 282]: 

THEOREM 1.61. A pair (a, j3) belongs to E if and only if 
j3^max(^2 , &$). 

THEOREM 1.62. A pair (a, /3) belongs to E *ƒ and owZy if j 8 ^ 2 . 

THEOREM 1.63. .4 £air (a, /3) belongs to E* if awd wfy if 
]8^ min (^2,^3). 

THEOREM 1.64. A pair (a, j8) belongs to TL* if and only if j8è^2. 

From Theorems 1.61 and 1.63 it is easily seen that E and E* do not 
cover the aj8-plane. This leads us to an investigation of the inequalities 
(1.1) and (1.2) for pairs (ce, /3) not included in E or E* and thus to a 
restriction on the classes K and K*. For each ikf > 0 , we define a class 
KM as follows: 

Let KM be the class of all f(x) such that 2"1 \og(B/b) g M, where B 
and b are respectively the least upper bound and greatest lower bound 
of ƒ(#) on #i <x <#2. 

Then we define two sets of pairs (a, /3) by the statements: 
Let EM be the set of all pairs (ce, j3) for which KKMGKCCP-
Let EM* be the set of all pairs (ce, /3) for which J£*2£M <ZK%. 
As we shall show, sets EM and EM* increase as M decreases, and E 

and E* are proper subsets of EM and EM* respectively. 

2. A word as to method. The inequality (1.1) can obviously be 
written 

I(f> %> h, a) 
(2.1) log J ' g O . 

*A(f,x,h,p) 

We follow Radó in investigating first the special case where f(x) is a 
linear function l(x). / ( / , #, h, ce) can be computed for all ce, and we 
choose a variable z> defined by 
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, x 1 l(x + h) 
(2.2) * = T l o g ~ ~> 

2 l(x — h) 
by which choice the left member of (2.1) in this case is transformed 
into a function <j)(v, a, j3) defined for all v, a, and /3. We shall explicitly 
compute <j>(v, a, /?) and investigate a number of its significant proper­
ties. On the basis of this investigation we shall separate the ajS-plane 
into point sets for each of which <t>(v, a, /3) has certain invariant prop­
erties for all (a, j8) in the set. We shall draw curves #=#(# , a, j8) in 
the vtp-plane which exhibit these invariant properties. Finally we shall 
state and prove two theorems about EM and EM*. 

3. I, A, and <f> expressed as functions of v. In the case where f{x) 
is linear, we let A$ denote [l(x — h)l(x+h)]112. Performing the in­
tegrations of (1.3), factoring out A 0 from the results and from (1.4), 
and substituting e2v for l(x+h)/l(x — h) according to (2.2), we ob­
tain, for V5*09 

Tsinh (a + l)*;!1 '* 
ƒ(/, x, h, a) - ,4o \ ' , if a * 0, - 1, 

L(a + 1) smh vj 
(3.1) 

(3.2) 

/ ( / , x, h, — 1) = A*($\v&fv)/Vy 

/ ( / , xy h, 0) = AQ exp (v ctnh v — 1), 

A(l% x, h, p) « ^ 0 ( c o s h pv)1"*, if fi ^ 0, 

A(l, Xy ky 0) = AQ. 

Since <f>(v, ay /3) is the logarithm of the ratio of 1(1, x, h, a) to 
A(ly Xy }iy ]8), we see that 4>{Vy af j3) is independent of -40. From (3.1) 
and (3.2) we have, for fl^O, 

1 sinh (a + l)v 1 
4>(v, oty /S) = — log --— # — log cosh 0Vy 

a (a + 1) smh v p 

if a 5*0, - 1;0 5*O, 

$(t>, 0, 0) = v ctnh v - 1 - (1/jS) log cosh /3t>, if fi ^ 0, 

*(*, - 1, j8) - log ((sinh v)/v) - (1/0) log cosh 0*, if j8 9* 0, 

1 sinh (a + l)v 
4>{Vy a, 0) log , , <N . ' if « ^ 0, - 1, 

a (a + 1) sinh » 
*(*. 0f 0) » » ctnh © - 1, 

$(*, - 1, 0) = log ((sinh v)/v); 
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and 
0(0, a, j8) - 0. 

That 0(0, a, i3) =0 follows trivially from (2.2), for v*=0 implies that 
l(x) is constant, and each of the means in (1.3) and (1.4) has the same 
constant value. We observe that <t>(v, a, /3) is a continuous function 
of vy a, and /3 for all finite values of the independent variables. We 
also see that <t>(v, a, 0) is an even function of v. Hence we shall in 
what follows consider v > 0. 

4. The set in which 0(v, a, j3) is identically zero. We have the fol­
lowing result. 

THEOREM 4.1. In the set of just three points which form the complete 
intersection of E and £*, namely: (--2, 0), ( — 1/2, 1/2), and (1, 1), 

The proof for the point ( — 2, 0) lies in the fact that sinh v is an odd 
function, and for the other two points in the identity: sinh 2v 
= 2 sinh v cosh v. That there are no other points where <t>(v, a, /3)ss0 
follows from the facts developed in the next section. 

5. The character of <f>(v, a, f3) for sufficiently small v. For sufficiently 
small positive v, and, because of the continuity of <t>(v, a, jS), for all 
a and /3, we have the following expansion of <j>(v, at j3) in power series 
of v: 

* (* , «f 0) = (« + 2 - 3/3)v2/6 

- (a» + 4a2 + 6a + 4 - 150V/18O + 0(v*). 

This is easily verified by integrating the series for ctnh v and tanh vt 

and applying the results to (3.3). 
From (5.1) we obtain the following theorem: 

THEOREM 5.2. There exists an €>0 such that for 0<v<e, 
(1) <t>(vt a, j3)>0, if a+2-v3p>0, or if a+2-3j(3 = 0, and - <*> <a 

< - 2 ; - l / 2 < a : < l , 
(2) <t>(v, a, j8) <0, for all other pairs (a, j3) &x:c0/>/ J/wse i# EE*. 

The proof consists in the following remarks: for sufficiently small v, 
(1) sgn 4>(vt a, j3)=sgn(c*+2-3j3), if a+2-3^5^0 , 
(2) sgn0(i>, a, ( a + 2 ) / 3 ) « - s g n ( a - l ) ( 2 a + l ) ( a + 2 ) , if a ^ - 2 f 

- 1 / 2 , or 1. 

6. The character of <f>(y, a, )3) as v approaches infinity. We shall 
show that lim„.^(«s a, /3) is not a continuous function of a and j8 for 
all values of a and j3. 
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From definitions we obtain the following identities: 

(6.1) log sinh v « v + log (1 - e~2v) - log 2, 

(6.2) log cosh v = v + log (1 + e~*v) - log 2, 

(6.3) ctnhz>= l + 2 / ( e l f - 1). 

We use (6.1), (6.2), and (6.3) to express </>(v, a, /3) for large positive v. 
We write only those terms which are significant as v—> oo, and indi­
cate by three dots the omission of two kinds of terms: (1) terms in­
volving exponentials which vanish as v—»«>, and (2) constants and 
terms in a and j8, independent of v, in those cases where limvwKfl» «> ]3) 
is positive infinity or negative infinity. 

We have, forj8>0, 

*(*, a, j8) - (1/jS) log 2 - (1/a) log (a + 1) + • • • , 

if a > - 1, a 9* 0, 

(6.4) *(*,0,/8) - (1//9) log 2 - H , 

*(*, - 1, IS) - ~ log v + • • • , 

*(»• a, j8) « - 2(a + l)v/a H , if a < - 1; 

forj3=0, 
<t>{v, a, 0) = fl + • • • , if a > — 1, a 9* 0, 

*(». 0, 0) = z> + • • • , 
(6.5) 

<£(z>, - 1, 0) = z> - log v + • • • , 
*(*, a, 0) = - (a + 2)»/a H , if a < - 1; 

andfor/3<0, 

4>(v, a,P) = 2v\ , if a > - 1, a & 0, 

*(*. 0, « - 2v + • • • , 
(o. o) 

4>(v, - 1, fi) » 2z> - log t> + • • • , 
<£(i>, a, j3) = - 2z>/a + • • • , if a < - 1. 

From (6.4), (6.5), and (6.6) we conclude: 

THEOREM 6.7. i45 v approaches infinity: 
(1) lim <£(*>, of, )3) = + oo, for (1) /3<0 and all a; and (2) j8«0, 

a > - 2 ; 
(2) lim 0(», a,/3) * - - » , > r ( l ) j8«0 , a < - 2 ; and ( 2 ) / 3 > 0 , a â - - l ; 
(3) lim<j>(v, a, j 8 ) - ( l / j 8 ) l o g 2 - ( l / a ) l o g ( a + D , / o f |8>0, a > - l , 

(4) lîm0(tFf 0, j8)-(l/j8)log 2 - 1 , /or 0>O. 
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We observe that for a> — 1, j8>0, lim„^oo (̂̂ > «» ]8) is a continuous 
function of a and j3, and the limit is positive, zero, or negative accord­
ing as j3 is respectively less than, equal to, or greater than ^z{a)1 

a > - l . 

7. The number of extrema of <f>{v} a, |3) for positive v. We shall de­
fine 

/ 0, - oo < « g - 1, 

(7.1) *4 - Met) - <« + 1, - 1 < a g 0, 

v 1, 0 < a < + oo, 

and then state and prove the following theorem. 

THEOREM 7.2. Forv>0,and ( a , / 3 ) ^ ( - 2 , 0 ) , ( - 1 / 2 , 1 / 2 ) or (1,1), 
there is at most one extremum of </>(vt a, ft), and an extremum exists if 
and only if the pair (a, ft) satisfies the inequality: min(^2, M <P 
<max(^2, M -

Except for the three (a, jS)-points where <f>(v, a, p) vanishes identi­
cally, <t>v(vf a, ]8) has a t most one zero for positive v. We shall show this, 
and determine the point set in which a zero exists. Differentiating 
<t>(v, a, j3) in (3.3), we have, for V5*0, 

<t>v(vf a, /J) « (1/a) [(a + 1) ctnh (a + l)t> — ctnh v] 

- tanh j3t>, a ?* 0, - 1 ; p ^ 0, 

#„(«>, 0, 0) = ctnh z> — v csch2 » — tanh pv, |8 ?̂  0, 

(7.3) #,(», - 1, 0) = ctnh t> - l/t> - tanh j8z>, P 9& 0, 

<j>v{v, a, 0) == (1/a) [(a + 1) ctnh (a + l)t> - ctnh v], 

a ^ 0, - 1, 

<£*(*;, 0, 0) = ctnh v — v csch2 » = (2~x sinh 2v — z>)/sinh2 v, 

4>v(v, — 1, 0) = ctnh » — 1/» = (t> — tanh »)/(» tanh v). 

We observe that <f>v(v, a, /3) is a continuous function of a and P, for all 
finite v. I t is easily verified that limVH>o$v(*>, ay /3) = 0, a fact which 
is more easily seen from (5.1). Expressing </>v(v, a> P) in terms of hyper­
bolic sines and cosines only, combining the terms into one fraction, 
and simplifying the numerators by replacing products of hyperbolic 
functions by equivalent sums [2, p. 129], we obtain 

s a sinh (a—p+2)v—(a+l) sinh (a—/3)z>—sinh (ot+p)v 
(7.4) tf>v(fl, a, j3) = ; 

2a sinh (a+l)ï> sinh » cosh Pv 
«5*0, -l;P?*09 
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sinh (2 — jO)fl+sinh 0z>—2z> cosh f$v 
<t>v(vt 0, 0) = ; /3^0, 

2 sinh2 v cosh f3v 
2v cosh (0—l)t>—sinh (/J+l)f>+sinh QS— l)z> 

2ÎJ sinh » cosh pz; 

a sinh (a+2)z>— (a+2) sinh aw 
<£v(z>, a, 0) = ; OJT^O, — 1 . 

2a sinh (a+1)» sinh tf 
We do not modify <t>v(v, 0, 0) and <j>v{vy — 1, 0) in this way, for we easily 
see from the final expressions for them in (7.3) that they are never 
zero for v>0. 

We remark that 4>v(vf a, j8) has a zero for positive v if and only if 
the numerator in the right member of an equation of (7.4) is zero for 
some positive value of v. Letting N(v, a, /?) denote this numerator, 
we may write, for a 5^0, — IJJST^O, 

2N(v, a, 0) - ae(«-fi+»v - a*-<*-*+f>» + (a + l)e<*-«>» 

^ ' ' - (a + l)er03-«>* + *-<«+*>• - e<«+«*. 

We observe that iV(z/, a, ]8) is identically zero for all v if (a, /3) is 
in EE*. For all other (a, /?) pairs, the equation N(v, a, /8) = 0 has at 
most five roots counting each root with its proper multiplicity [3, 
(77), p. 49]. N(v, a, j8) is obviously an odd function of v, and we shall 
show that N(v, a, ft) = 0 has a triple root for 0 = 0, and hence it has a t 
most one positive root. Using the series for hyperbolic sine, we expand 
N(v, a, j8) in powers of v, the linear terms vanish, and we have 

N(v, a, P)=4a(a+l)(a+2-3p)v*/3l+0(ifi), 

if o ^ 0 , - l ; / 3 5 * 0 ; a + 2 - 3 j M O , 
( 7 ' 6 ) N(v, a, ( a + 2 ) / 3 ) - - ( 6 4 / 2 7 ) a ( a + l ) ( a + 2 ) ( a + l / 2 ) ( a - l ) ^ / S ! 

+0(z>7), if a ^ 0 f - 1 . 

Inspection of (7.6) shows that N(v, a, j8) = 0 has a triple root for 
t> = 0 if a?^0, - 1 ; j 3^0 ; and a + 2 - 3 / 3 ^ 0 . The multiplicity is five if 
a + 2 — 3/3 = 0. Hence a positive root exists only if a + 2 — 3/3^0. Now 
for sufficiently small v, 

sgnN(v, a, /3) = s g n a ( a + l ) ( a : + 2 - 3 / 3 ) , 
(7.7) 

a ^ 0 , - l ; j 8 ^ 0 ; a + 2 - 3 / 3 ^ 0 , 

as one sees from (7.6). As v approaches infinity, N(v, a, j8) is domi­
nated by the term having the largest exponent in the right member 
of (7,5). Hence as v—> °o, 
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(7.8) sgn N(v, a, 0) = sgn a(a + 1)(^4 - |8), a ^ 0, - 1. 

Plotting the signs of N(v, a, &) for small v and for large vt in the 
<*|8-plane, we find that they are opposite in and only in those point 
sets specified in Theorem 7.2. If /3 = 0,1 or a + 1 , the number of terms 
of N(v, a% (3) in (7.5) having different exponents is four, and hence 
there are at most three roots. Again v~0 is a triple root of N(v, a, j8) 
= 0, and there are no positive roots. 

A similar investigation for a = — 1 or a ~ 0 shows that a positive 
root exists for N(vt a, (3) =0, if 0<j8<l/3 or 2/3<j3<l respectively. 

8. The number of zeros of <j>(vt a, j3) for positive v. We state the 
following result. 

THEOREM 8.1. A zero of<l>(vt a, )S) exists for positive v if and only if 

(8.2) min ty2, *3) £ fi £ max (ft, ^3), 

where either both equalities hold or neither holds, and the zero is unique 
if neither equality holds. 

The case where both equalities hold follows from Theorem 4.1, for 
yp%{a) intersects ^,(a) in ( - 2 , 0), ( - 1 / 2 , 1/2), and (1, 1). That a 
zero exists when neither equality holds follows from the continuity 
of <t>{v% a, j8) and Theorems 5.2 and 6.7, since sgn <t>(vt a, j8) for small v 
is opposite to that for large v if and only if both inequalities in (8.2) 
hold. The necessity of the condition (8.2) and the uniqueness of the 
zero follow from the facts: <f>(0, a, /?) = 0, and when an extremum exists 
it is unique. 

9. The character of <j>(vt a, j8) at all points of the a/3-plane. In fig-
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ure 1 we have drawn the aj3-plane separated into sets and subsets for 
each of which 4>(v, a, /3) has the following properties: (1) for sets: 

(1) sgn<j>(vt a, /3) for sufficiently small v is invariant, 
(2) sgn</>(vt a, j8) for sufficiently large v is invariant, 
(3) the number of zeros of <t>(v, a, /3) is invariant, 

and in addition to these three, we have (2) for subsets, 
(4) Hm*.>«><£(p, a, j8) is invariantly positive or negative, finite or in­

finite, 
(5) the number of extrema is invariant. 

<t>(v, a, d) 

Type 4 

<>(?, « , P) 

4>(vf a, 0) 

Type E* 

I *(», a, 0) 

FIG. 2 

In figure 2 we have sketched ten curves <£ =<£(p, a, /3) in the wjfr-plane 
which exhibit these properties. We shall call these curves the charac­
teristic curves for the sets and subsets of figure 1. The lettering in 
the two figures is such that the curve marked 1 in type A exhibits 
the invariant properties of <f>(vf a, /8) for (a, j8) in the set marked A%, 
and so on. A brief description of the curves and an exact definition 
of the point set for each curve follows. 

Type A. The characteristic curves for set A (where tyi <fi <fa) have 
the common properties: a maximum for p = 0, a minimum and a zero 
for positive values of vt and a positive limit as v—» <*>. A has two sub­
sets: 

Ail - oo < a < - 2, fa < P < fo, 
and 
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A2: - 1/2 < a < + 1, fa < P < fa. 

In Ai, limv̂ oo0(v, a, j8)= oo, but in <42 the limit is finite. 
Type A*. The characteristic curves for set A* (where fa<fi<fa) 

have properties as would a reflection of type A in the z/-axis. A* has 
two subsets: 

A?: - 2 <a £ - l,fa <P <fa, 
and 

A2*: - 1 <a < - 1/2, 1 < a < «>,fa<p <fa. 

Type EE*. The characteristic curve for the set £ £ * is the horizon­
tal axis or u-axis, since for (a, j8) in££* : ( -2 ,0 ) , ( - 1 /2 , 1/2), (1, 1), 
4>(v,a9P)mO. 

Type £ . The characteristic curves for the set £—££* have the 
common properties: a maximum at the origin, and negative values 
for all v different from zero. There are three subsets: 

E%: asS — 1» j3êmax(^2, fa) except for the point ( — 2, 0) in ££*, 
£2: —1 <a, j8^max(^2, ^4) except for the points ( — 1/2, 1/2) and 

(1, 1) in EE*. 
£3: -l/2<a<l,fa£p<fa. 
In £1, lim„-«>#(#, a, ]8)= — co. In £2 and £3 the limit is finite, and 

£3 is distinguished by being the only subset of £—££* in which the 
function has a minimum. When $~fa in £3, lim*w/K*'» <*> /3) is zero. 

Type £*. The characteristic curves for £*—££* have common 
properties as would a reflection of type £ in the «/-axis. £*—££* has 
three subsets: 

£1*: — co <a< + co, j8^min(^2, 0) except for the point ( — 2, 0), 
£2*: - K a < + co, 0<]8^min(^2, ^4) except for ( -1 /2 , 1/2) and 

(1,1). 
£3*: - l < a < - l / 2 , ^ 4 < j 8 g ^ 8 ; a n d l < a < + co,^4< i8^^3. 

10. The sets EM and EM. Radó showed [l, p. 274] that when: 
(1) f(x) is a general positive and continuous convex function, 
(2) l(x) is the linear function that coincides with ƒ(x) zXx—h and 

x+h, 
(3) l(x) satisfies the inequality (1.1), 

then ƒ{x) satisfies (1.1). 
Now for any given M>0, the class KKM is a restricted class of con­

vex functions ƒ (#), containing only those for which 2""1 log (B/b)£M. 
Let us now consider the equation, for any given ikf>0, 

(10.1) 4>(M,atfi) = 0 , 

where <f> is the function defined in (3.3). We may think of j8 in(10.1) 
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as an implicit function of a, with If as a parameter, which we shall 
denote by j8(a, M). The curve /3=j8(a, M) in the a/3-plane lies entirely 
in the set where (a, j3) satisfies the inequalities (8.2) and passes 
through the points of £ £ * for all M. For small ilf, the curve lies 
close to the straight line 18=^2(0:); in fact, using (5.1), replacing v by 
M, setting <f>(M, a, j3) = 0, dividing by M2, we find that jS-*(a+2)/3 
as JkT—>0. For large Jlf, the curve lies close to j3=^3(o0. Approximate 
values of ]8 for given values of a and M may be easily computed by 
the use of tables. 

We conclude with the theorems: 

THEOREM 10.2. A pair (a, /3) belongs to EM if and only if 
0èmax(^2, j8(a, M)). 

THEOREM 10.3. A pair (a, j8) belongs to EM* if and only if 
PSmm(fa, P(a,M)). 

We first prove the sufficiency of the condition in Theorem 10.2. Our 
hypotheses are: (1) f{x) is in K, (2) f(x) is in KM, and (3) the pair 
(a, j3) satisfies j3èmax(^2, j3(a, M)). We wish to prove that: (4) f(x) 
is in Kafi* 

By (3) the pair (a, j8) is either in the set E where j3^max(^2, ^3) 
or in that part of the set A where /3 /̂S(<x, M). If (a, j8) is in £ it is 
obviously in EM and f(x) is in 2£«0. If (a, )3) is in that part of A where 
0è/3(«, AT) we consider first j8=/3(a, If) and then j8>j3(a, Jlf). 

When j3=/3(a, Jkf), <sfr(M, a, )3) = 0. For the /(*) that coincides with 
f(x) at x—h and #+&, ^4(/, #, h, p)=A(f, #, A, /3), and by (1), 
ƒ(ƒ, *, h, OL)£I(l9 x, h, a). For the same /(*), v£2~l \og(B/b)^M, 
and therefore </>(vt a, j8) :g0, for ƒ(#) is in KM, and the pair (a, j3) that 
we are considering is in A. Hence we have 1(1, x, h, a) SA(l, xt h, j8) 
and thus /(ƒ, x, h, a) ^A(f, x, h, j3), which proves that f (x) is in Kap. 
When j3>j3(a, ikf), 0(M, a, j8)<0, for ^4(/, #, h, /3) is an increasing 
function of j3 [4, p. 26], and therefore <£(Af, a, j8) decreases with in­
crease in /3. Thus for all v£ M, <l>(vt a, j8) ^ 0 , and ƒ(*) is in UT«0. 

To prove the necessity of the condition we have as hypotheses: 
(1), (2) and (4), and wish to prove (3). Suppose, contrary to our con­
clusion, for all f(x) in KKM, there exists a /3<max(^2, j8(a, M)) such 
that/(x) is in Kap. In A, where j3(a, Jkf)>^2(a), j3<j3(a:, Af) implies 
that ^(Af, a, j3)>0. In A*, where j8(a, Af)<Ma), P<fa(a) implies 
that for sufficiently small p, 0(z>, a, /3)>0. In E*—EE*f for all v, 
<£(*;, a, j3)>0. Thus in any case, we have a value of v<>M for which 
0(t>, a, j8)>0. Hence for some usSJIf, the inequality (1.1) is not satis­
fied, in particular, by a linear function in the class KKM, which gives 
us a contradiction. 
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The proof of Theorem 10.3 is similar, but with obvious modifica­
tions. 
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EMMANUEL MISSIONARY COLLEGE 

A SIMPLE SUFFICIENT CONDITION THAT A METHOD OF 
SUMMABILITY BE STRONGER THAN CONVERGENCE 

RALPH PALMER AGNEW 

1. Introduction. A matrix anh of real or complex constants deter­
mines a transformation 

(1) <T» » 23 ankSk 

and a method A of summability by means of which a given sequence 
Su S2, • • • is summable to <r if the series in (1) converge and define 
numbers <ri, 0*2, •• • such that crw—><r as w—»oo. If a sequence sn is 
summable A, we say that A {sn} exists and that sn belongs to the sum­
mability field of A. If sn is summable A to <r, we say that A {sn} = <r. 
The method A is regular if A {sn} = lim sn whenever lim sn exists. 

Toeplitz [l91l] (reference in bibliography at end of this paper) 
proved that A is regular if and only if the three conditions 

00 

(2) T,\ank\ S M, n - 1, 2,3, ••• , 
*«i 

(3) lim ank = 0, k = 1, 2, 3, • • • , 

00 

(4) lim 22 anh « 1 
n-»oo kwml 
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