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Introduction. I t is well known tha t the developable surfaces of the 
congruence of normals to a surface intersect the surface in its lines of 
curvature. One may inquire if there exist congruences other than the 
congruence of normals to a surface the developables of which inter­
sect the surface in its lines of curvature. I t is the chief aim of this 
paper to give an affirmative answer to this query. The exhibition of a 
congruence of the required variety depends upon the solution of a 
partial differential equation of Laplace—a circumstance which occurs 
frequently in problems of differential geometry. 

The notation employed here is that of Eisenhart,1 with the excep­
tion that Tapy will be used for the Christoffel symbol of the second 
kind. Greek letters will take the range 1,2, and Latin letters the range 
1, 2, 3. The convention of the tensor analysis as to summation on re­
peated indices will be observed. 

1. Analytical development. Consider a surface S represented by 
xi=xi(u1

f u2) (i = l, 2, 3) referred to a rectangular cartesian system of 
coordinates. The functions ^*(wx, u2), together with their partial de­
rivatives to the second order, are understood to be continuous at any 
point P of the surface. A unique line X of a congruence A is deter­
mined a t each point P of the surface S by the direction cosines 

(1) X* = X V , w2), X*X* = 1, 

where the functions X* and their first partial derivatives are continu­
ous at points of the surface under consideration. 

The functions X* may be expressed in terms of the direction num­
bers x\a (a = l, 2) of the tangents to the coordinate curves on the 
surface through P , and the direction cosines X1 of the normal to the 
surface at P . Thus, 

(2) X* = pax\a + qX\ 

where pa are the con tra variant components of a vector in the sur­
face a t P , q is a positive scalar function, and x\a denotes covariant 
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1 Eisenhart, Differential geometry, Princeton University Press, 1940. 
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differentiation of x* with respect to ua, based on the first fundamental 
tensor g^—x^aX1^ of the surface 5. 

On using (2) and the second of equations (1), there results 

(3) X<X' s (p*x\a + qXi){p^xi
s + qX*) s go/ip*? + q2 = 1. 

If Ö is the angle between the normal to 5 a t P and the line X of the 
congruence A at P , it follows from (3) that 

cos S s X iZ i = g. 

Thus, from equation (3), it is seen that the length of the vector with 
contravariant components pa is sin 0. Tha t is, the last of equations (3) 
assumes the form 

pap« = sin2 0. 

I t may be noticed here that the angle </> between the line X of the con­
gruence A at P and the direction dxl/ds of any curve C: ua~u"(s) 
through P on S is given by 

cos $ s \idxi/ds = (pax\a + qXi)xi,^dup/ds = gappadup/dsf 

where 5 denotes arc length along C. 
Covariant differentiation of X* in equation (2) gives 

\it0 = p«x\at + qX\e + x\ap
aj + X{q^ 

which, by means of the Gauss and Weingarten equations2 

x\afi = dafiX*, X\fi = - dMg^x\h 

can be written in the form 

(4) X\« = ^ax\y + vaX\ 

where, in turn, iiy
a and va are defined by 

(5) M7« s pyt0t - qdwgryf va s qta + pHafi. 

Differentiation of X*V = 1 yields X*X\« = 0, which can be written, by 
use of (2) and (4), in the form 

{p°%\o + qX^i^aX^y + VaX1) = 0, 
or 

(6) py^a + qva = 0 (a = 1, 2). 

Because q does not vanish, hy may be written for py/q, so that equa­
tion (6) takes the form 

(7) va = - hy^a (a = 1, 2). 
2 Eisenhart, loc. cit. pp. 216, 217. 
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2. Developables of the congruence and their intersections with the 
surface. In order to arrive at the differential equation of the two one-
parameter families of curves on the surface 5 in which the develop­
ables of the congruence A intersect the surface, take a point with 
coordinates #*+/X* on the line X through P on 5, and let P move 
along a curve C: ua = ua(s) on S for which the point with coordinates 
xi+t\i will describe a curve tangent to the line X. This requires that 

(8) d(xi + /XO s dx* + td\* + \*dt = m\\ 

where m is to be determined. Multiplication of equation (8) by X* and 
use of XiXi = 1 show that m =dt+\idxi

f by means of which equation (8) 
becomes 

dx* + «X* = X*(X *<***), 

or 

(9) [X\a + *X\« - \i(\kXk,a)]dua = 0. 

From equations (2), (4), (7), it is observed that 

(10) XV, . = fg.« = pa, 

(11) X*t«X*,0 = ll'aPrfig*T + VaVfi = lfaflrfi(g*T + KK), 

(12) X\ a #\ j3 = M7«**,7*'^ — M7«g7/3 = M)3<*. 

Multiplication of equation (9) by X1,/?, together with use of equations 
(10), (11), (12), yields 

(13) (/Xa/3 + lGafi)fa" = 0 (/3 = 1, 2), 

where Ga/3 is an abbreviation for 

(14) X'f«X*,0 = M'«Mr/ï(̂ r + M r ) . 

Elimination of the parameter / from equations (13) gives the differ­
ential equation 

(15) ev*tiaTGfiidu"duP = 0, 

in which eyd is defined as follows: e12 = l, e21=— 1, eu=:e22 = 0. TAe 
curves on the surface which satisfy equation (15) constitute the net of 
curves in which the developables of the congruence intersect the surface. 
This net will be referred to as the intersector net. 

3. Particular congruences. It will be shown next that equation (15) 
can be written in the form 

(16) eay(n
yfi — hivfi)àuadu* = 0. 
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From the definition of Gap in (14) it follows that 

(17) 

By use of the relations eyVVMT« =M^er» eerg*ag<rT=geaa, where /*— IM^I » 
g^U*/*!» a n d 0a<r is defined by 612= 1, 621 = — 1 , en = 022 = 0, the last 
member of (17) takes the form 

(18) vgeaaiu'd - hrvfi). 

Thus, on rejecting the nonvanishing factors /*, g, equation (16) fol­
lows. 

A necessary and sufficient condition8 that the intersector net given 
by (16) be a conjugate net is that 

ea*Qf$ - hfvfi)d<* = 0, 

which, by use of (5) and (7), can be written in the form 

Thus, a necessary and sufficient condition that the congruence have the 
property that its inter sector net on S be a conjugate net is that the parame­
ters ha of the congruence satisfy the partial differential equation of first 
order 

(19) ***%<** = 0. 

The intersector net on S is orthogonal, if, and only if, 
<W(M*/? - hrvdg** = 0. 

Again, by use of (5) and (7), and the identical vanishing of the term 
eypdairg!rygapi it is found that a necessary and sufficient condition for the 
orthogonality of the intersector net on S is that the parameters h« of the 
congruence A satisfy 

(20) e^{h\a - daJPlf)g^ = !0. 

I t is to be observed that if A is the congruence of normals to 5 
( i ' s O ) , then equations (19), (20) are satisfied identically, and equa­
tion (16) reduces to the lines of curvature net represented by 

e^daygy(rduaduP = 0. 

The congruence A is a normal congruence if, and only if, Ma/3=M0«* 
This can be shown as follows. If every line of A is normal to a surface 
S given by yi=yi(u1

1 u2), then yi=xi+t\i and X^(x*+/X*) = 0 identi-
3 Eisenhart, loc. cit. p. 231. 
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cally in ul, u2. Because XiXi,adw0f = O and Xi(^i,a+X^,a)rfw
O! = 0 for arbi­

trary direction dua on S> it follows that 

XV f l + t,i = 0, XV.2 + t,2 = 0. 

On differentiating the last two equations with respect to u2, ul re­
spectively, and eliminating dH/duWu2, there results 

which, by (4), can be written as 

or 

(21) naf3 = npa. 

On multiplying equation (5) by gpyt it follows from equation (21) that 
a necessary and sufficient condition for the congruence A to be a normal 
congruence is that 

Pa,0 = p0,a. 

4. Congruences for which the intersector net coincides with the 
lines of curvature net. It follows from equation (16) that the inter-
sector net is the parametric net on S if, and only if, 

(22) liTtfi = hivft (7 ^ 18), 

which, by means of equations (5) and the fact that hy = py/q, can be 
expressed in the form 

(23) h\a = (gy + hyh*)da„ (y*a). 

The first order partial differential equations (23) appear as a two-
dimensional analogue of an ordinary differential equation of Riccati. 

I t will now be shown that the two first order partial differential 
equations (23) in hy become two partial differential equations of the 
second order by the substitution 

(24) A* = - dy^,a (7 - 1, 2), 

where ^ = log <a(ul, u2). Covariant differentiation of equations (24) 
yields 

hy,a « - dy^,ffa - dy\*>p,„ 

by use of which equations (23) become 

- dy^,oa - dy\a>P,, « (py + d<"dv>xl>,T\l/tP)da(,. 
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On setting ^ = log co, and using the fact that daTdaff = Sr«, there results 

d^00t<ra + dT9afat, + g°ydaoO> = 0 (7 ^ «) 
or 

(25) (dv<at9).a + g°ydaao> = 0 (75^ a) . 

A solution o)(ul, u2) of the two differential equations (25) determines the 
parameters ha in (24) of a congruence whose inter sector net on S is para­
metric. 

I t is to be required next that the parametric intersector net be the 
lines of curvature net on the surface .S. For this, it is necessary and 
sufficient that £12 = 1̂2 = 0. In this case, both of equations (25) reduce 
to the single equation of Laplace 

(26) (^X*),« = 0 (y^a). 

Equation (26) may be expanded into the form 

di'd*<a/du°du* + (d^,a - ^ r ^ d c o / o V " = 0, 

and this, in turn, on using 

d^,a = ddw/du" + dTipa + dv>T%a, 

takes the form 

(27) dt*d2<a/duadu* + (ddy*/dua + d^Y^^dia/du9 = 0 ( 7 ^ a). 

Use of the Codazzi equations,4 together with gi2 = <2i2 = 0, allows equa­
tion (27) to be written out in the form 

d2o) ^ d22 dgn do) dn dg22 dœ 

duldu2 g22du du2 du1 g i i fe du1 du2 

Thus, it can be concluded that the exhibition of a congruence whose de-
velopables intersect a given surface in its lines of curvature depends upon 
finding a solution of equation (28). After ha are found from equations 
(24), py and q are determined by the relations hff=pff/q and equa­
tion (3). 

To the solution œ(ul, w2)=constant, of equation (28), there corre­
sponds the congruence of normals to the surface 5. 

I t should be oberved that if gn is a function of u1 alone, or if g22 is 
a function of u2 alone, then a solution of equation (28) can be obtained 
by quadratures. 

5. Coincidence of the intersector net with the asymptotic net on 

4 Eisenhart, loc. cit. p. 230. 
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the surface. The intersector net may be required to coincide with a 
net other than the lines of curvature. For example, in case the asymp­
totic net on S is parametric, dn = d22 = 0, so that if the intersector net 
is required to coincide with the asymptotic net, equations (25) be­
come 

(29) (dt«<a,a).a + gyydayo) = 0 (7 5* a; a, y not summed). 

On putting 7 = 2, a = l, and making use of the Codazzi relation 

ddu/du1 = ^ ( r 1 ! ! - r2
12), 

there results from equations (29) 

d2w/duldul + T^dœ/du1 - T2
ndœ/du2 + g22(d12)

2œ = 0, 

and similarly, with y = 1, a = 2, 

d2œ/du2du2 - Tl
22da>/dul + T2

22da>/du2 + gll(dl2)
2o> = 0. 

To a solution w(ul, u2) of the last two equations there corresponds a con­
gruence A for which the developables intersect the surface S in its asymp­
totic curves. 
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INTEGRAL DISTANCES 
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In a note under the same title (Bull. Amer. Math. Soc. vol. 51 (1945) 
pp. 598-600) it was shown that there does not exist in the plane an 
infinite set of noncollinear points with all mutual distances integral. 

I t is possible to give a shorter proof of the following generalization: 
if A, By C are three points not in line and k= [max(-45, BC)], then 
there are a t most 4(& + l)2 points P such that PA -PB and PB -PC 
are integral. For | PA — PB\ is at most AB and therefore assumes one 
of the values 0, 1, • • • , k, that is, P lies on one of k + 1 hyperbolas. 
Similarly P lies on one of the k + 1 hyperbolas determined by B and C. 
These (distinct) hyperbolas intersect in at most 4(& + l ) 2 points. An 
analogous theorem clearly holds for higher dimensions. 
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