If
$$p = q + 1$$
, replace (21) by
$$[(2\alpha_k - \beta_q)(1 - x) + (A - B)x]F$$

$$= \alpha_k (1 - x)F(\alpha_k +) + (\alpha_k - \beta_q)F(\alpha_k -)$$

$$- x \sum_{i=1}^{q-1} V_{j,k}F(\beta_j +); \qquad k = 1, 2, \dots, p.$$

University of Michigan

ON THE GROWTH OF THE SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

A. ROSENBLATT

In a recent paper, N. Levinson gave four theorems concerning the behaviour of the solutions of the differential equation of elastic vibrations

$$(1) d^2x/dt^2 + \phi(t)x = 0$$

as $t \to +\infty$. It is the purpose of this note to give generalizations of the Theorems I and III of Levinson by making use of certain inequalities concerning homogeneous equations of the first order

(2)
$$\frac{dx_i}{dt} + \sum_{k=1}^{n} a_{ik} x_k = 0, \qquad i = 1, \dots, n.$$

Theorems I and III of Levinson run as follows:

THEOREM I. If $\alpha(t)$ denotes the integral

(3)
$$\alpha(t) = \int_0^t |\phi(t) - c^2| dt,$$

then

(4)
$$x(t) = O\{\exp(\alpha(t)/2c)\}.$$

THEOREM III. If $\alpha(t)$ is O(t) then

(5)
$$\limsup_{t\to\infty} |x(t)| \exp(\alpha(t)/2c)| > 0.$$

Received by the editors January 4, 1945.

¹ The growth of the solutions of a differential equation, Duke Math. J. vol. 8 (1941) pp. 1-11.

The Polish mathematician Z. Butlewski in a paper written in Polish² sets

(6)
$$r = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2},$$

(7)
$$\phi(t) = \sum_{1}^{n} a_{ii} \left(\frac{x_i}{r}\right)^2 + \sum_{i,k=1}^{n} (a_{ik} + a_{ki}) \frac{x_i x_k}{r^2},$$

where $i \neq k$, i < k, and obtains immediately from (2)

(8)
$$r = C \exp\left(-\int_{t_0}^t \phi(\tau)d\tau\right).$$

Setting

(9)
$$\alpha_{ii} = \int_{t_0}^{t} |a_{ii}| d\tau, \qquad \beta_{ij} = \int_{t_0}^{t} |a_{ij} + a_{ji}| d\tau,$$

we have

(10)
$$r \leq C \exp \left(\sum_{i=1}^{n} \alpha_{ii} + \frac{1}{2} \sum_{i,j=1; i < j}^{n} \beta_{ij} \right)$$

and from this we have the following theorem.

THEOREM XVIII OF BUTLEWSKI. If $\alpha_{ii} < + \infty$ and $\beta_{ij} < + \infty$, all the systems x_i , $i = 1, \dots, n$, of solutions of (2) are bounded.

With the designation

(11)
$$M(t) = \max \int_{t_0}^{t} |a_{ij}| d\tau,$$

we have

(12)
$$r \leq C \exp(nM(t)).$$

We can complete Butlewski's theorem by remarking that

(13)
$$r \geq C \exp\left(-\sum_{1}^{n} \alpha_{ii} - \frac{1}{2} \sum_{i,j=1; i < j}^{n} \beta_{ij}\right),$$

and

(14)
$$r \geq C \exp(-nM(t)).$$

² O całkach rzeczywistych równań różniczkowych zwyczajnych, Wiadomości Matematyczne vol. 44 (1937) pp. 17–81.

In the particular case n=2 Butlewski introduces polar coordinates

(15)
$$x_1 = \rho \cos \phi, \qquad x_2 = \rho \sin \phi$$

and obtains

(16)
$$\rho = C \exp\left(-\int_{t_0}^t \left\{a_{11}\cos^2\phi + (a_{12} + a_{21})\sin\phi\cos\phi + a_{22}\sin^2\phi\right\}\right\}d\tau\right).$$

The maximum of $F(\phi) = -\{a_{11}\cos^2\phi + (a_{12} + a_{21})\sin\phi\cos\phi + a_{22}\sin^2\phi\}$ is

$$2^{-1}$$
 { $-a_{11} - a_{22} + ((a_{11} - a_{22})^2 + (a_{12} + a_{21})^2)^{1/2}$ },

so that

(17)
$$\rho \leq C \exp\left(\frac{1}{2} \int_{t_0}^{t} \left\{-a_{11} - a_{22} + ((a_{11} - a_{22})^2 + (a_{12} + a_{21})^2)^{1/2}\right\} d\tau\right).$$

Thus we obtain the following theorem.

THEOREM XIX OF BUTLEWSKI. x_1 , x_2 are limited if

(18)
$$\frac{1}{2} \int_{t_0}^{t} \left\{ -a_{11} - a_{22} + ((a_{11} - a_{22})^2 + (a_{12} + a_{21})^2)^{1/2} \right\} d\tau$$

is limited.

In the same manner we obtain

(19)
$$\rho \ge C \exp\left(\frac{1}{2} \int_{t_0}^t \left\{-a_{11} - a_{22} - ((a_{11} - a_{22})^2 + (a_{12} + a_{21})^2)^{1/2}\right\} d\tau\right),$$

completing Butlewski's results.

The linear differential equation

(20)
$$x'' + \psi(t)x' + \phi(t)x = 0$$

with continuous ϕ and ψ can be transformed into a system (2) by setting

$$(21) x' = \lambda x_2, x = x_1,$$

 $\lambda \neq 0$, continuous in t. We obtain the system

(22)
$$\frac{dx_1}{dt} - \lambda x_2 = 0, \quad \frac{dx_2}{dt} + \frac{\phi}{\lambda} x_1 + \left(\frac{\lambda'}{\lambda} + \psi\right) x_2 = 0,$$

 $a_{11} = 0$, $a_{12} = -\lambda$, $a_{21} = \phi/\lambda$, $a_{22} = \lambda'/\lambda + \psi$.

The inequalities (17), (19) now take the form

(23)
$$\rho \leq C \exp\left(\frac{1}{2} \int_{t_0}^t \left\{-\frac{\lambda'}{\lambda} - \psi + \left(\left(\frac{\lambda'}{\lambda} + \psi\right)^2 + \left(\frac{\phi}{\lambda} - \lambda\right)^2\right)^{1/2}\right\} d\tau\right),$$

$$\rho \geq C \exp\left(\frac{1}{2} \int_{t_0}^t \left\{-\frac{\lambda'}{\lambda} - \psi - \left(\left(\frac{\lambda'}{\lambda} + \psi\right)^2 + \left(\frac{\phi}{\lambda} - \lambda\right)^2\right)^{1/2}\right\} d\tau\right).$$

$$\left(24\right)$$

Taking $\lambda = c$, Butlewski obtains

(25)
$$\rho \leq C \exp\left(\frac{1}{2} \int_{t_0}^{t} \left\{ -\psi + \left(\psi^2 + \left(\frac{\phi}{c} - c\right)^2\right)^{1/2} \right\} d\tau \right)$$

and we can add the inequality

(26)
$$\rho \ge C \exp\left(\frac{1}{2} \int_{t_0}^t \left\{-\psi - \left(\psi^2 + \left(\frac{\phi}{c} - c\right)^2\right)^{1/2}\right\} d\tau\right).$$

We shall now generalize Levinson's Theorem III for the equation (20).

We can suppose x>0, x'<0, otherwise we should have an infinite number of values $t=t_i$, $i=1, 2, \cdots; t_i \rightarrow \infty$, with

$$(27) \qquad \left| x(t_i) \right| \ge C \exp \left(\frac{1}{2} \int_{t_0}^t \left\{ -\psi - \left(\psi^2 + \left(\frac{\phi}{c} - c \right)^2 \right)^{1/2} \right\} d\tau \right).$$

Consider the intervals $n \le t \le n+1$. We have

$$x(n+1) - x(n) = \int_{n}^{n+1} x'(t)dt,$$

and denoting by x_n' the maximum of x'(t) in (n, n+1),

$$x(n) \geq -x_n', \quad x_n' = x'(t_n), \quad n \leq t_n \leq n+1.$$

We have

$$x'(n) - x_n' = \int_{t_n}^{n} x''(t)dt = -\int_{t_n}^{n} (\phi x + \psi x')dt,$$

$$|x'(n)| \le x(n) + x(n) \int_{n}^{n+1} |\phi| dt + |\psi|_{\max} x(n)$$

$$= x(n) \left\{ 1 + \int_{n}^{n+1} |\phi| dt + |\psi|_{\max} \right\}.$$

 $|\psi|_{\text{max}}$ is the maximum of $|\psi|$ in $n \le t \le n+1$. We obtain

(28)
$$x(n) \ge \frac{C \exp\left(\frac{1}{2} \int_{t_0}^t \left\{ -\psi - \left(\psi^2 + \left(\frac{\phi}{c} - c\right)^2\right)^{1/2} \right\} d\tau \right)}{1 + \frac{1}{c^2} \left(1 + |\psi|_{\max} + \int_{n}^{n+1} |\phi| dt \right)} .$$

The result is the following theorem.

THEOREM. There exist infinite values of $t = t_i$, $t_i \rightarrow \infty$, for which we have (27) if the following conditions are satisfied:

- 1. $\alpha(t)$ is of order O(t).
- 2. $|\psi|$ is bounded.

University of San Marcos