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Introduction. The object of this note is to give a geometric inter­
pretation to the conditions of integrability of Killing's equations1 and 
to the similar equations for collineations2 in an affinely connected 
space. This is done by considering the more general problem of map­
ping a space upon itself, the mapping preserving some differential 
invariant. We shall be concerned with purely local properties so that 
the functions involved are assumed to have continuous derivatives 
of any necessary order and the groups are assumed to be infinitesimal. 

1. Infinitesimal mapping of Vn upon itself. By an infinitesimal 
mapping of Vn upon itself we understand a correspondence generated 
by a vector field £*(#)*> that is, to a point P(x) corresponds a point 
P{x) where 

(1.1) %* = xl + ^(x)8L 

In order to see the effect of such a mapping on a differential in­
variant, we consider—merely to be specific—a tensor field of compo­
nents r*,(#). Such a tensor field is mapped into one whose compo­
nents are 

_ dx1 dofi 

dxa dxJ 

which for the mapping (1.1) gives 

(1.2) r*,(«) - r<,(*) + ( — T; - — T*A 
\dxa dx3 / 

ÔL 

By the variation of T*j(x) we shall understand Hm$M(T*,•(%) 
-TS-(*)) /5 / and shall denote it by ôTi

i(x)/ôL Then (1.2) gives 

(1.3) — — « $«—- - — r « y + — T \ , 

M dxa dx" dx3' 

with a corresponding expression for any scalar or tensor field. If a 
tensor field is to remain invariant, it is necessary and sufficient that 
its variation be zero. From (1.3) it is obvious that a zero tensor field 

Received by the editors May 29, 1945. 
1 L. P. Eisenhart, Riemannian geometry, chap. 6. 
2 L. P. Eisenhart, Non-Riemannian geometry, chap. 3; our Ri

Jki is the negative of 
that used by Eisenhart. 
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is invariant under an arbitrary mapping; it is also evident that the 
variation is a differential invariant. Hence if the space Vn is affinely 
connected, partial differentiation may be replaced by covariant differ­
entiation. 

2. Affinely connected Vn. Denoting covariant differentiation by 
Ttie we have from (1.3) 

( — ) = Éar*/.«.» + Éa.*r*y,a + £«,y,*rv* 

\ M ) f k 

and 
/ = ZaT*,tkt* + S*.,T*atk + i*,kT*,,a - V.aT*ith\ 
ot 

subtracting and using Ricci's identities we get 

(6T*j\ «(T'y,*) 

\ -(2.1) \ 8t /tk Ôt 

where R is the curvature tensor of the Vn. We recall2 that 

(2.2) É".y.»+ * * * « « - 0 

are precisely the differential equations of an affine collineation. Hence 
we have the following theorem. 

THEOREM 1. A necessary and sufficient condition that a mapping must 
satisfy so that variation and covariant differentiation be commutative is 
that the mapping be an affine collineation. 

The conditions of integrability of (2.2) may be written2 as 

fR'ikl.a ~ R"&&*.<* + Riak^aJ+ R'i*£°.* + - R W . I = 0, 

{aJ?*y*lf»f« - Raikl.n£\a + £'«*!.m£*,H = 0 , 

and from (1.3) it follows that they may be written as 

(2.3) «JRWM = 0, BR'skhm/M = 0, • • • . 

Hence we have the following theorem. 

THEOREM 2. A necessary and sufficient condition that an affinely con-
nected space must satisfy to admit a group of collineations is that it admit 
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a group of mappings leaving the curvature tensor and its successive co-
variant derivatives invariant. 

From the theory of differential equations of the form (2.2) and from 
(2.3) it is evident that 

THEOREM 3. The group of affine collineations is a subgroup of map­
pings preserving the curvature tensor and its successive covariant dériva-
tives. 

That the two groups are not necessarily identical can be seen from 
the case of an affinely flat space. Since R^ki — O in this case the group 
of mappings is the group of analytic transformations while the group 
of collineations is (equivalent to) the group of linear transformations. 
On the other hand if ®„ the group of collineations, is of generic 
rank r, then, as can be shown, the group of mappings is also © r . 

3. Motion in a Riemann space. If in a metric space, with metric 
tensor ga, we require that the mapping preserve this tensor, we get 
according to (1.3) 

(3.1) giai;°,i+ga£a
ti = 0, 

which are the equations of Killing for an infinitesimal motion. If they 
hold then (2.2) and (2.3) necessarily follow.1 We consider a space of 
constant (nonzero) curvature. In this case 

R'jki - cWkgfl - «'«y») 

and since Rijhitm
iSB0 in this case, (2.3) reduce to 

(3.2) Vkigafrj + */«É«,i) - *'i(*«**".y + g,'«t°,k) = 0 

which by contraction give (3.1). Hence we have the following theo­
rem. 

THEOREM 4. In a space of constant (nonzero) curvature a mapping 
preserving curvature is a motion. 

Since the group of motions in any case is a subgroup of the group 
of collineations it follows as a corollary of Theorem 4 that in a space 
of constant nonzero curvature the group of motions and the group of 
affine collineations are the same. A little more than this can be easily 
proved; this corollary is true for an Einstein space Vn (n>2) which 
is not flat. 

4. Motions as a subgroup of collineations. Suppose that a Rieman-
nian Vn admits a group © r of affine collineations (r^n2+n). This 
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means tha t (2.3) admit r linearly independent solutions £V)> 
<r = l, 2, • • • , r. Let the variation of ga corresponding to £*(<r) be 
denoted by fe(<r)»,- (cf. (3.1)). Then the question is whether there exist r 
constants c(<r) such that c({r)£V) *s a motion; that is, such that 

(4.1) c W * w i y * 0. 

Obviously a necessary condition is that the matrix of n(n + \)/2 
rows and r columns whose elements are h{<T)a be of rank less than r. 
We shall show that this condition is also sufficient. For suppose this 
rank is s<r\ then (4.1) admit r~-s linearly independent solutions 
4>{<T)a(x), ce = l, 2, • • • , r — s, so that 

(4.2) <*><"> J*<"\v = 0 

are identities in x. Hence 

and because of (2.2), A(<r)»/fjt = 0. Hence <j>(ff)a,k is also a solution of (4.1) 
and hence 

(4.3) 0 <">«,* = il<W<*V 

If there is to be a solution c(<r) then a set of r — s functions pa must 
exist such that 

from which it follows that 

pt^fi + paA^ak<t>{ff)fi = 0. 

Hence, since <£((r)
a are linearly independent we must have 

(4.4) ffitk + p«A(*ak = 0. 

From (4.3) and the linear independence of <£((r)/s it follows that 

Ayak,l ~ Atal.h + AfiakAyfil ~ AtalAlfr = 0 

and these are precisely the conditions of complete integrability of the 
differential equations (4.4). Hence (4.4) admit a set of r —5 linearly 
independent solutions; thus we have the following theorem. 

THEOREM 5. If a Riemann space admits a group ® r of affine collinea-
tions a necessary and sufficient condition that it admit a group of motions 
is that the matrix ||&(<r)i?|| be of rank less than r. If this rank is 5, then 
the group of notions is of order r — s. 
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