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Introduction. In the present paper a new invariant quadratic dif­
ferential form Û is geometrically defined for a general pair of surfaces 
S> S' whose corresponding points x, x' determine the metric normal 
to S a t x. The ratio of the form Q to the first fundamental form ds2 

of 5, in which Î2 and ds2 are defined for a common arc element of S 
at x, is found to be independent of the direction of the element if 
and only if the surface S' is the locus of the center of mean curvature 
of S\ the ratio thus determined is the Gaussian curvature K of S at x. 
We introduce at a point x of 5 the concept of conjugate elements of a 
given arc element of a conjugate net and prove that the form Ö for 
an arbitrary arc element is identical with the form Kds2 for either 
conjugate element if and only if the surface S' is the plane net at in­
finity. The principal directions at x of the tensor whose components 
are the coefficients of the form Ö are the classical principal directions 
of 5 at x for an arbitrary choice of S'. Finally, we characterize the 
net of lines of mean-curvature of S and the mean-conjugate net of S 
as integral nets of equations of the form 0 = 0, in which the forms Q 
are defined with respect to certain geometrically determined trans­
forms S' of 5 . The method of the present paper employs dual systems 
of linear homogeneous equations of the first order in compact forms 
which facilitate the use of a tensor notation with homogeneous car­
tesian point and plane coordinates. 

1. The fundamental differential equations. The rectangular carte­
sian coordinates of a generic point x of an analytic surface S are de­
fined by single-valued functions of two independent parameters u1, u2, 

xl « x{{uli u2), i = 0, 1, 2. 

Let gafi and gaP denote the covariant and contravariant metric tensors 
of 5, respectively, and let dap denote the second fundamental covari­
ant tensor of S. I t is known [l, p . 220]l that the direction cosines zi 

of the normal to S a t x and the functions x{ are solutions of the differ­
ential equations 

d2x (y) dx dz /P\dx 

BuPdu" (op) dua dua \3a/dvP 
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where the functions 

la/31 

are the Christoffel symbols of the second kind formed with respect 
to the first fundamental form of S and the functions 

O 
are components of the mixed tensor defined by 

O - - *-"• 
Homogeneous cartesian coordinates of a finite point of space may 

be obtained by adjoining to the three ordinary rectangular coordi­
nates x°t x1, x2 a fourth coordinate #8 = 1. For a point at infinity the 
homogeneous cartesian coordinates are of the form #°, x1, x2, 0. The 
point a t infinity on the normal to S a t x has homogeneous cartesian 
coordinates s°, zl

9 z2, 0. As x moves over 5 this point at infinity de­
scribes the plane net S, a t infinity. We observe that the system (1.1) 
is satisfied by each pair of homogeneous coordinates #{, s*, i = 0 , 1 , 2, 3. 
Thus the surface S and the corresponding plane net Sg at infinity gen­
erated by the infinite point on the normal to S at x are integral surfaces 
of the system (1.1). 

Let us define points xo, x%, #2, #3 by the relations 

dx0 

(1.2) x = Xo, « xa, a = 1, 2, z = #3. 
dua 

These relations enable us to put the system (1.1) in the form of the 
following system of linear homogeneous differential equations of the 
first order, 

dxi /h\ 
(1.3) ( ) s * « 0 , i, h « 0, 1, 2, 3; a » 1, 2, 

du" Via/ 
where 

0-* Q - Q -
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Let \x\ denote the determinant whose elements are the functions 
x[p) and let £«denote the normalized cofactor of x) in \x\, defined by 
the relations 

(1.4) (ix[ « «I, h, r « 0, 1,2,3, 

in which the right members are the Kronecker deltas. The functions 
£, i = 0, 1,2,3, form a set of homogeneous cartesian plane coordinates 
of the plane determined by the three points Xhf fiT^r. Differentiating 
(1.4) with respect to ua and making use of (1.3), we obtain 

<is) *;^+0*i-°-
On forming the inner product of the left member of this equation with 
£j and dividing by | x\, we find that the plane coordinates £J are solu­
tions of the system of equations 

(1.6) ?L + p ( ' \ = o9 a = 1 , 2 . 
dua \ha/ 

A relation of the form 

(1.7) x' = z+ kx, 

where k is an arbitrary function of w1, w2, defines the general coordi­
nates of a point xf which is collinear with x and z and generates a 
surface S' as w1, u2 vary. For the sake of convenience we denote the 
points x, Xi, X2, x1 by yot y\, y^ yZy respectively, so that the fundamental 
differential equations (1.3) may be written in the form 

dyi / h\' 
(1.8) r — l . ) y i - 0 ; », * « 0 , 1 , 2 , 3 ; « = 1, 2, 

dua Via/ 

in which 

\ ( W \a /3 / W / \a /3/ W / \ 3 « / du« 

W W' a, /3 = 1, 2, a ^ 0. 

Let | y | denote the determinant whose elements are the functions 
y,, i, p = 0, 1, 2, 3, and let ?/« denote the normalized cofactor of y* 
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in \y\. The functions t}{, i = 0, 1, 2, 3, are homogeneous plane coordi­
nates of the plane determined by the three points y*, h?*r. The differ­
ential equations satisfied by the functions rjr

{ are easily found to be 

(1-9) 57 + 'V)-°-
2. The invariant quadratic differential form. Let x\ X' denote the 

points of S' whose curvilinear coordinates are ul, u2 and u1+du1
t 

u2+du2, respectively, and let wf p denote the corresponding tangent 
planes of S. Let / denote the line joining the points x' and X' and let y 
and Y denote the intersections of / with the planes w and p, respec­
tively. We prove the following theorem. 

THEOREM 1. The principal part of the cross ratio (x't y, X'} Y) is the 
quadratic differential invariant 

Q = aapduadufi, 

where aap is the tensor defined by 

aa$ « kd*$ — hap, 

in which dap is the second fundamental tensor of S and hap is the first 
fundamental tensor of the spherical representation of S. 

Except for terms of order at least two, the point coordinates of X' 
and the plane coordinates of T and p are given by 

X' « y* + 
and 

respectively. The homogeneous cartesian coordinates of y, except for 
terms of order at least two, are obviously given by the form 

O' yhdu". 

The coordinates of Y are defined by a relation of the form 

Y « y + Qyz 

such that the condition F ' £ t « 0 is fulfilled. The function Î2 is, there­
fore, the root of the equation 
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( y , + Q yuJ) (,: - n\ Q *»-) = o. 
Since 3̂ 77? = 5*, multiplication of the factors of the left member yields 

(2i) "-Q'O'**"-
On making use of the relations between corresponding coefficients of 
(1.7) and (1.3) we obtain the form 

(2.2) Ü == aapduadu^ 

where aap — kaap — ghyd^dya. I t is known [l, p. 253] that the first fun­
damental tensor of Gaussa spherical representation of 5 is defined by 

( 2 . 3 ) hap = g^dtpdya. 

The proof of the theorem is, therefore, complete. 

3. New geometric characterizations of the form Kds2. The plane 
at infinity is the surface S' for which k = 0. The associated tensor aap 
is, therefore, defined by 

(3.1) aap = — hap, 

and the invariant —Shis identical with the first fundamental form of the 
spherical representation of S. 

I t is known that for a unique conjugate parametric net, namely, the 
mean-conjugate net, the first fundamental form of the spherical repre­
sentation is expressible in the form 

ds2 = <J2(gn(du1)2 - 2gi<tduldu2 + g22(du2)2). 

Let us determine all of the parametric nets on an unspecialized sur­
face 5 for which Q is expressible in the form 

(3.2) Q = 4>{gii{dulY - 2g12duldu* + gn(du2Y). 

The conditions to be fulfilled are represented by the relations 

(3.3) hn/gn = - hu/gu » W#22. 

I t is known [l, p . 253] that the tensor hap may be expressed in 
terms of the first and second fundamental tensors by means of the 
relation 

(3.4) hap = dapKm — gapK 

in which K and Km are the Gaussian curvature and mean curvature of 
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S defined by 
2 

K = (diidn — d12)/g, 

Km = 2(gud22 — gi2du)/g. 
Equations (3.3), if hap is replaced by the right members of (3.4), as­

sume the forms 
Km(g22du — #11^22) = 0, 

(3.6) Km(dng12 + gnaw) = 2Kgngi2, 

Km(d22gl2 + g22du) = 2Kgng2*. 

On substituting the right members of (3.5) in equations (3.6) and 
simplifying, we obtain the relations 

£22^11 — £11^22 = 0, 
\0 • I ) 

d\\d\2 == d\2&22 === 0. 

These relations are satisfied if Jn = rf22 = 0, du 5^0, that is, if the 
asymptotic curves of 5 are parametric. If, however, the asymptotic 
curves of S are not the parametric curves of S, the first of equations 
(3.7) is the condition that the parametric net be a duametric net 
[2, p. 308] ; the second and third conditions insure that the parametric 
net be a conjugate net. Hence, in this case, the parametric net is the 
unique conjugate duametric net of 5, that is, the mean-conjugate net 
of S. We have, therefore, that £2 assumes the form (3.2) when S' is the 
plane net at infinity if, and only if, the parametric net of S is either the 
asymptotic net or the mean conjugate net. For the case of the asymptotic 
parametric net <j>~K and for the mean conjugate parametric net 

The result described above in terms of the asymptotic parametric 
net leads to the following geometric determination of the invariant 
Kds2. Let Cx, C_x denote the curves which pass through x of the 
conjugate net defined by 

(3.8) {du*Y - \\dulY = 0 

whose directions at x are X, —X, respectively. Let x and P denote the 
points of S whose curvilinear coordinates are ul, u2 and u1+du1, 
u2+du2, respectively. The u1 and u2 asymptotic curves which pass 
through P intersect the curve CLx in the points Q, Q' whose curvilin­
ear coordinates are ul — dul, u2+du2, and u1+dul, u2 — du2, respec­
tively. We shall call the elements xQ and xQ' the conjugate elements 
of xP. We are able now to describe our characterization of Kds2 by 
means of the following theorem. 
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THEOREM 2. The form fl for an arbitrary arc element xP of a con­
jugate net is identical with the form Kds2for either conjugate element xQ 
or xQ' if and only if the surface S' is the plane net at infinity. 

An analogous characterization of —Kds2 can obviously be formu­
lated with reference to the mean-conjugate parametric net of S, but 
we shall not describe this result here. 

Another geometric characterization of Kds2 arises from the deter­
mination of the surface S' such that the invariant Q of S, S' is ex­
pressible in the form 

(3.9) ti = ads2. 

Just one such surface S' exists since the equations 

(3.10) kdap — hap = agap 

possess a unique solution (k, cr). For, on substituting the right mem­
ber of (3.4) for hap in (3.10) we find the equations 

(3.11) ( É - Km)dap = ( c r - K)gap, 

which hold for an unspecialized surface 5 if, and only if, 

k = Km, a = K. 

Hence, we have the following theorem. 

THEOREM 3. The differential form fi of S, S' and the first fundamental 
form of S, defined with respect to a common direction, are related by the 
equation 

Q = ads2 

if and only if S' is the locus of the center of mean curvature of S. The 
associated function a is the Gaussian curvature of S at x. 

4. The principal directions, the lines of mean curvature, and the 
mean conjugate net of S. Since we have 

aap = kdap — hap, ha$ = dctpKm — gapK, 

we may write 

(4.1) aafi = (* ~ Km)dap + Kgap. 

I t is obvious, in view of the form of (4.1), that if h^Km, the principal 
directions for the tensor aap are identical with the classical principal 
directions of 5. 

Let us assume, for the sake of convenience, that the lines of curva­
ture are the parametric curves of 5. The results which we present are, 
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however, independent of the choice of the parametric net. The author 
[2, p. 309] has called a curve a line of mean curvature of 5 if at each 
of its points the normal curvature 1/p of S in the direction of the 
curve is equal to the arithmetic mean of the principal normal curva­
tures of S at the point, that is, if 

i„i(±+±). 
P 2 \pi p2/ 

From equations (6.5) and (6.6) of [2, p. 310] we find that if gi2 = ̂ i2 
= 0, the lines of mean curvature of S are the integral curves of 

(4.2) AtenOte1)* - 222(^2)2) = 0 

in which A = gnd22 —£22̂ 11- The significance of the presence of A in 
equation (4.2) is that the lines of mean curvature form a determinate 
net, except when A = gn œ dn « o ; in this exceptional case 5 is a sphere. 

We inquire if there exists a surface S' for which Q is expressible in 
the form 

(4.3) Ö « aA(gn(du*y - g22(^2)2). 

The affirmative answer is readily reached, for we find that the equa­
tions 

(4.4) 

can be satisfied simultaneously. The second equation of (4.4) is satis­
fied identically in k, a since #12 = 1̂2 ^ A12 «O. The other two equations 
may be written in the forms 

2 
tón — gnd\\/g = crAgn, 

(4.5) 2 
kdw ~ g l l ^ / g =* — 0"Ag22. 

Solving, we find 
2 2 2 2 

/A ^ h *» (dng22 + giid2$)/g(g22du + ^11^22), 
(4.0) 

<r «s» diid22/g(gndn + £11̂ 22). 
Making use of the expressions 

^ » ** G>n̂ 22 + gi*dn)/g 

kdn -

kd\2 -

kd22 " 

- hn = o-Agn, 

- hu « 0, 

~ fl22 = "~ <rA#22 
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for the Gaussian and mean curvatures of 5 , we express kt <r in terms 
of JK" and Km as follows: 

(4.7) k - Km - 2K/Kmt a « K/gKm. 

Hence we have the following theorem. 

THEOREM 4. If and only if S' is characterized in relation to S by (1.7) 
with k expressed in terms of the Gaussian and mean curvatures of S by 
the relation 

k = Km — 2K/Km, 

the lines of mean curvature of S are the integral curves of the associated 
differential equation 0 = 0. 

Let us recall that a curve of the mean conjugate net is characterized 
by the property that at each of its points the radius of normal curva­
ture of S in the direction of the curve is the arithmetic mean of the 
principal radii of normal curvature of S a t the point, that is, 

P « (pi + P O / 2 . 

Retaining the lines of curvature as parametric curves, the mean con­
jugate net is the integral net of the equation 

(4.8) Aidnidu1)* - dn(du*y) » 0. 

It is not difficult to prove, by the method we have employed above, 
that a surface S' exists such that the associated form 0 is expressible 
by the relation 

(4.9) 12 = aàidnidu1)2 - d22(du*)2). 

In fact, we find that 

(4.10) k-Km/2, <r~l/2g. 

We are now in a position to state our concluding result. 

THEOREM 5. If and only if k is the arithmetic mean of the principal 
normal curvatures of S at x> the integral net of the associated differential 
equation 0 = 0 is the mean conjugate net of 5. 
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