A COMBINATORIAL FORMULA WITH SOME APPLICATIONS

L. CHING-SIUR HSU

The aim of this note is to present a combinatorial formula and state
its applications to partitions, number of solutions, and Dirichlet’s in-
tegral.

Let 6i(x), - - -, 0.(x) be = arbitrary functions of x and let
nSR I ([6:] - - - [64]) be defined by

by---b

(1) n@ag---an([61] - - - [6a])
= R E ol(xl) ¢ an(xn)r
Tyt o ot Tp=m,a1S 215 b1 ¢ - capnShy
where @y, + * -, @ay by, - - -, ba, m are all integers and the right-hand
side of (1) is summed over all different integral solutions of
w1+ - - - Fxa=m with a1 Sx1Sby, -+ -+, G SXaSho.
More generally we define
by by n, n
n@ay--an([0]" - -+ [6:]™)
= > 01(%11)
(2) zirt e Tangt et TRt T, a1 S 23S b, ¢ 0 arS g S by

o 03(®mg) ¢ - Ok(@r1) ¢ -+ Ok(Fkmy)-
We make the following conventions:!

(A) &%([0]") =0 for m <na or m>nb.

(B) »S([0]) =0if m0, .&([0]) =1if m=0.

©) Ifay= - - - =an=0a,by= -+ =b,=0b, we write

wCmn([6] -+ - [a]) a5 m@u([B:] - - - [8a]).

We now show that?

n ng nk Vi+vodo o sy
Z Z DR Z (—- 1) vhvrt + kCnl,Iang,sznk.Pk

r1=0 vo=0 vi=0

(3) ‘m'@l <[¢1]vl[ l]nl—vl . [¢k]vk[¢k]nk—vk)
= G a([0]™ - - - [8a]™,

where 6y, - - -, 0; are k arbitrary functions of x and ¢;(x) =0:(x+b;),

Received by the editors June 2, 1944.
1 These conventions are used in proving (3) and other formulas.
2 The formula (3) shows that all the strong restrictions for x can be removed.
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!P,(x) =0.-(x+a.-- 1), m' =m'(111 o 1/1‘) =m —-Zb.-v.- ——Z(a.- - 1) (n,- bl Vi)
(G=1,--,k).
ProoF. By definition we have

m’@?( [4)1]71 [\Iq]ﬂl-n . [d)k]yk [‘l,k]nh—-rk)
= Y w0 mSa:]" )

myt -« +map=m

 masn @i ([06] ) m S [0177).
Let T:=0i(x:) - - - 0:(%in;) =1, - -, k),and let T=Ty - Ty be
a term contained in the right-hand side of (3), thatis, x1=a1, « + +, %
=ai. Without loss of generality we may assume i, © * +, %1

Zbi+1; .-+ %8, - - ¢, Xrey=ba+1. Since the necessary and suffi-
cient condition for

Ti € myis@oeni([0:] Imu@a([0:]77) (1S i=Z B
is that there is a term 6i(x1) - - - 0:(x,,) Of m,;_,Sp41 contained in T
as a part while the other part T:/0i(x1) - « - 0:(x,,) is contained in

m2:&q;, the number of occurrences of T in the left-hand side of (3)
is therefore given by

{20 { S 0wt - {E - vCun)

v1=0 vo=0 V=0
{0 if &, - - -, ¢, are not all zero,
U ifh=ee =t =0,
We see that the term T generally vanishes except when a;<x; <b;
(j=1, - - -, k). Hence (3) is proved.

It is directly deduced from (3) by putting m= - -+ =np=1,
i+ - - - +nr=n that

é (- l)k E M'@r([‘ﬁm] e [¢'¥k][ ak+1] e [!pan])

@ cap)E (1e-om)
(4) (ay k) by
= oy o ean([B:] - - [8a]),
where (1« « cax* - ran)=1 -« -n),m'=m"(cn + + - o) =m+n—k
'—(ba1+ ctt +bag+aak+l+ ¢ +aa,,)-
Let F be an arbitrary function of 6, ---, 6, and let
U0 {F(By, - - -, 0.,)} be defined by

et e {F (s, -+, 00))
= Z F(01(x1), tt 0,,(961,))-

Tyt + o Tp=m, 615 218 b1, 0 ¢ 100D 2, S by
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Then, the formula (4) can be written more generally as

i ("" l)k E m'@r {F(¢¢u Sty ¢ak’ ‘l’uu.n C 'I’a,;)}

(5) =0 (a1 ap)E (1 n) -
= oo {FO1, - -+, 02}
If, for every (cu - - - ay), the limit

lim m’@? {F(d)dv t Tty d’akv #’ag.uy Ct ‘pa,.)} (m, - m,(al tr ab))

m— oo

exists, then we have further

n

k . )
Z ('— 1) Z lim m’@l {F(d’an Tty ‘l’dkv 'paH.n tre 1\0%)}
(6)k-° (@1 ap) S (1+-+n) M , ,
= lim n Sy oar{F(O1, - -+, 0n)}.

m—> 0

We shall now state some applications of the above formulas.

Application to partitions. We denote by p.(m) the number of
partitions of m into parts not exceeding 7 or into at most » parts.

Let {131 .. B,,} be an ordered partition of m, namely,
m=P01+ B+ -+ 4+ Bn Br1=hr= " = Ba

We further denote by p}t:::2*(m) the number of ordered partitions,
{61 .. -B,.}’s, of m into exactly n parts which are restricted to
@1 SP1Sby, a2 SPaShy, - - -, 6 SPBaSha. We have then

bre by il k
(N Pa:-'-an(m) = E (-1 z Palm — k — boy —
k0 (a1 rap)E (1 on)
—bay = Gopyy — * = Ga,),
where the p,.(m)’s can be evaluated by the generating function
1 ]
8) Gau(z) = = 1 n(m) 2™,
® G@ = o T + 2 palm)
Proor oF (7). Starting with (5) we define
1 if a; g X é b,‘,
0:(x) = { .
0 if x<a;or b <u,

G=1---n),

F(01(x1), » « + , 0n(2n))
{01(951) e+« 0,(x,) if the order 21 = 23 2 -+ + = %, holds,

0 if theorder ; & 23 = + - + = x5 does not hold.
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Thus we see that

m@::“.::{F(ol: c e 101&)} = ?::'::(m)-
Similarly
m'@:’ {F(d’an tt ¢au ‘/’ak+11 Ty ‘pan)}
= pa(M — by — *++ — bay — Qagyy — * * — Qo, — k).
Hence (7) is proved.
It may be noted that the formula (7) still holds when p}:::% (m)

denotes the number of partitions of 7 into # parts which are restricted
to more conditions than

Bi=Ba= =By a1 =P1=by, 00 S Bn S ba
Application to number of solutions. Let AN (N) denote the

ay
number of integral (or prime) solutions of the equation

k k k
w1+ xet -t a=N
with a1 Sx1<by, 0aSx3<by, + + +, 6, Sx,<b,, then by (5) we have
byee by kid % ©w srr0 0 .
(9) A“l"'“n(N) = Z (— 1) Z Abn"‘bv;,GVH-],"'a!,(N)’
k=0 1) E R )

where(vl LI IR V”)=(1 .. .n).
We shall now proceed to find an asymptotic formula concerning

the number of integral solutions of a linear equation with integral
coefficients.

Let A(N) denote the number of integral solutions of the equation
doaxr=N (1=1,"-+,c21)
k=1

under the restrictions ai:N <x, <BxN (k=1,..., n), where
¢, * * +, €y are relatively prime to each other, ay, 8x are real values.
When o, =0, B8r=1 (k=1, + - -, n) it is well known that?

(10) A(N) = N*Yey -+ - ¢o-(n — 1)1 4+ O(N™2),
Define
1 if x is divisible by ¢; and the inequality a;c;:V < x<B:c:N holds,
0:(x) = (1=:i=n)
0 if x is not divisible by ¢; or the inequality does not hold.

3 The proof of (10) can be obtained easily by the method of partial fractions.
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Thus by (4) and (10) we obtain the following consequence.*
Let Sk=>_01- v5)Ect- - -nyBri- - vy Where

0 for (1 — By — -+ — ay,6s,) S 0,
Boreeny = {(1 = Bl — * = Builuy — CopiCnsr — * * ° — Qp,Cy,) "1
for (1 — By — * ++ — ay,0,) > 0.
Then
AN So— S SRR S 1
(11) N(,._z T T .1:.(n —1)! +0 (F)

Evidently (11) may be seen as a generalization of (10). If
a= -+ =ch=1, axSxx b (k=1, - - -, n), we can express 4(N)
more precisely as®

n
(12) A(N) = X (= D* > CN' (k-ayg+ - -y =By -+ - +byy) 1
k=0 (yl...yh)eu...”)

where N'(B)=N+n—k—1—(a1+ - - - +an).
Application to Dirichlet’s integral. The following theorem is well
known.

Let

aj—1 a,—l a,—1
o= [ e [

f(x1 + X2 + + x,.)dxldxz o e dx,.,

where the variables x1, xs, - - + , X, are resiricied to the region

D:0=kh =1t 2+ -2 S ke; 05 0,0 2,---,0= x,.

Then the integral I oy can be reduced to the form

I'(e)T(es) - - - T(an) k2
13 I = attast - tag—1 du.
(13) (0 T(or + st -~ + an) u en=1f(u)du

We shall now extend the formula (13). Let

bl, s,
ey e
Ay, =, An
flxr 4 22+ -+ ¢+ 2W)dwadxs - - - day,

4 The detailed proof of this is omitted.
6 The formula (12) can be obtained also by considering two generating functions.
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where the region R is defined as the set of all points (x; - - - x,) such

that
0=0;:= % = by Bt x+---+a. 5k

Since the Dirichlet integral I, can be considered as a limit of
multiple summations with variable upper limits, by applying (6) we
have

by~ ba
I X1 Xp
al . . an
(14)
[e e} 0 o0 [c o}
n
= Z(—- 1)1 Z I x"... x’j x”j+l... x””
=0 e r)E @)
b, by; @y, a,
We have to establish a formula for
00 v+ OO
I X1 Xn (51201"'361120)‘
C1 *** Cn

Let Iq...s denote the integral

T(ast1) - - - T(a) minet, k) o min(ez, k—21) 4
x1 X1 Xo dx2
Tlosrr + -+ + an) Jo 0

min(cs, k—2z1—* « *—xs—1) a1
.- X, 4%,
0

k—a1— -« —z4 ceeday—
f ur 1f(u 4+ x4 -+ x)du.
0

Now, by (14) it can be shown that

0 ¢+ 0O

Cn,1 Cn,2
@ =Ig— 2 Io+ 2 Tap—---
(15) HEQA-- ) GHE - )
€1 *** Cq
+('_ 1)"](1...,,,),
where
o0 0

I(0)=I X1 Xn P,

min(e1,k) min(en, k—2z1— + +—2zn—1)
al—1 a,—1
I‘l"'”)=f f Xy %X, dxy-c- - dXn.
0

0
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To prove (15), the formal logic theorem is also applicable.

Consider a differential &t~ - + « 2~ 1f(Zy4+ + - - +&,)dE - - - d&p.
We may assume that £, =S¢, © * *, £, SCvp Frga > Cgy * * * 1 vy > vy
i+ va)=( - -n).

Since the integral is a limit of multiple summations and may be
written as

min(e1, k) i1 min(cs, k—21— " « *—xs—1) a1
I(l. ceg) = X1 dx1 e Xs dx,
0

.

0
ag+1—1 ap—1
oo Xot1 e X, f(x1+"'+xn)dxu+l"°dxn
Ry

a ce ai—1 ag—-1 agql ap
== o o . LIS xl .. x‘ x‘+l . e xn
0 0 Ry(z1+++zp)

flar 4 -+ x)day - - da,

where

Ri(tep1 -  %n): O0S Xopa+ -+ an S k— (214 -+ + m);
xe-{v-ly"'yxngov
Ro(or++ - xn): O0=S21=Zc¢1,+,0S 2 S 63

O=sx14+ -+ a, Sk Xeplyr 0, X = 0,

we see that the differential 17 « « « 2= 1f(&+ « - - +&,)d&; - - - A%,
appears exactly C;, times in Z(,l...,,)ea...,.)I(,,l. ..»yy. Therefore
the number of occurrences of the given differential in the right-hand
side of (15) is equal to

1 if ¢t=0,

Coo—Cint v+ (= 1)iCu =
£,0 61+ + (= Dy, {0 § 1> o.

Hence the formula (15) is proved.

The integral I...,y may be calculated by dividing the limits of
the integral and integrating it separately.

It is seen that the integral Iy... ,) can be written also in the form:

P(aa+1) e I‘(a”) Y fcz ar—1 fc: P
0 0

% dx X2 dxg v+ Xy dx,
I‘(as+1+"'+an) 0 ! ! ? ’

[(k~z1— >+ «—ze)+| k—21— - - == za|1/2 a1t + =1
. u
0

flu 4+ 2.+ -+ + x)du.

Connecting (14) with (15), we see that it is a generalization of
Dirichlet’s integral I o) with k=0, k;=Fk in (13).
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It may be noted that the formula (14) is also called Liouville’s
extension and the integral regions D and R can be defined also by

D: 0SkhiSawi +---Fax" <k, 0Sua;
R: 0Sa;Sa:Zb;y, dumy+- - +dan Sk

SouTHWEST ASSOCIATED UNIVERSITY,
KuNminG, CHINA

TRANSFORMATIONS IN METRIC SPACES AND
ORDINARY DIFFERENTIAL EQUATIONS

JOHN V. WEHAUSEN

1. Introduction. It is evident that the solutions of a differential
equation y’=f(¢, ¥) passing through a point (r, 7) in the region of
definition of f(¢, ¥) may be considered as invariant functions of the
transformation Ty(t) =n+ [+f(s, ¥(s))ds when suitable restrictions are
placed upon the functions y(¢) considered. That such invariant func-
tions exist for continuous f(¢, ¥) can be made a consequence of
Schauder’s fixed point theorem for completely continuous trans-
formations in bounded convex subsets of a Banach space.! For f(¢, y)
satisfying a Lipschitz condition in y the existence and uniqueness of
an invariant function can be made to follow from a fixed point theo-
rem of Caccioppoli of an essentially simpler nature.? In the present
paper we wish to show that the existence of invariant functions for
continuous f(¢, ¥) as well as several other theorems concerning solu-
tions of differential equations can be made to follow from some theo-
rems concerning a particular class of transformations in a complete
metric space. Although the existence theorem for fixed points given

Presented to the Society, November 26, 1943; received by the editors November
15, 1943, and, in revised form, June 20, 1944,

17, Schauder, Der Fixpunkisatz in Funktionalrdumen, Studia Mathematica vol. 2
(1930) pp. 171-180; also, Zur Theorie stetiger Abbildungen in Funktionalriumen,
Math. Zeit. vol. 26 (1927) pp. 47-65 and 417-431.

2 R, Caccioppoli, Un teorema generale sull'esistenza di elementi uniti in una tras-
formazione funzionale, Rendiconti R. Accademia dei Lincei (6) vol. 11 (1930) pp. 794~
799; for proofs and various applications of both Caccioppoli’s and Schauder’s theo-
rems we refer also to Niemytsky, Metod nepodvizhnykh Tochek v Analize, Uspekhi
Mat. Nauk vol. 1 (1936) pp. 141-174,



