1944] A CERTAIN TYPE OF NONLINEAR INTEGRAL EQUATIONS 833

BIBLIOGRAPHY

1. M. R. Hestenes, An analogue of Green's theorem in the calculus of variations,
Duke Math. J. vol. 8 (1941) pp. 300-311.

2, W. T. Reid, Green's lemma and related results, Amer. J. Math. vol. 63 (1941)
pp. 563-574.

3. M. H. A. Newman, Elements of the topology of plame sets of points, Cambridge
University Press, 1939.

HARVARD UNIVERSITY

ON A CERTAIN TYPE OF NONLINEAR
INTEGRAL EQUATIONS

MARK LOTKIN

1. Introduction. The object of this paper is to prove that the non-
linear integral equation

o) =2 [ 1) + if fzc(x e s

t=1

(1)
'Fi(slv S ¢(31)) ) d’(si))dsl et dsi]

has at least one eigenvalue, provided the functionals

b 3
Gi’(xv ‘0) =f A f K!'(x’ S1y * 00y si)
2 a a
Fy(s1,+ 0y Siy 0(s1)y + + +, 0(s3))dsy - - - dsq

are fully continuous, and the F; satisfy a certain linear integrodiffer-
ential equation. The solution of (1) is shown to be equivalent to that
of a variational problem containing infinitely many parameters. The
latter problem, however, can be solved easily by the method of Ray-
leigh-Ritz, which consists in approaching the solution of the varia-
tional problem by a sequence of variational problems containing only
a finite number of parameters. The convergence of this procedure is
assured by a convergence theorem of Friedrich Riesz.

2. Preparatory remarks. Let I be the closed interval a £x £b, and
L? the class of all functions having Lebesgue integrable squares on I
with a norm not larger than N2, Let, further, {v,.(x) } n=1,2,3,--°)

Received by the editors May 18, 1944.



834 MARK LOTKIN [December

be a set of functions in L? and %(x) a function such that!

3) lim | v.(2)w(x)dx = f‘z‘)(x)w(x)dx

n—wo

for any arbitrary w of integrable square on I or, what is equivalent,
for any arbitrary w&L2; that is, we assume the weak convergence
of {.}, in the following denoted by W-limu..v,=9. We next show
that 5& L2 Since the right-hand side of (3) is assumed to exist for
every wE& L2, it follows by a known result (see, for example, Kaczmarz-
Steinhaus, Theorie der Orthogonalreihen) that ¥ is of integrable square
over I. Hence, if w=7, (3) becomes

fz')z(x)dx = lim fv,.(x)fa(x)dx,

and since by Schwarz’s inequality

[ f v,.(x)ﬁ(x)de < [ f 1'12(x)dx:|,

we obtain, as claimed,

@ f #(2)dx < V.

We now assume that the functional G;(x, v) be fully continuous, that
is, that

(5) lim Gi(xm vn) = Gi(fy 'b); = 1, 2, e, Mm,

n— 0

forany {x,} €I and v, EL? for which lim,_..x, =#&and W-lim, .., = 5.
The introduction of a closed orthonormal system of functions
{w,(x) } €L? associates with each v, an infinite sequence of numbers

Cny = fvn(x)wv(x)dxr v=1,2---,
such that
> o = [ @iz s N’
y=1

for every n2 1. The class L? of functions v then corresponds to a class
©? of vectors v=(cy, ¢z, + - - ) with ¢, = [v(x)w,(x)dx. The transition

1 All integrations are to be extended over the interval I.
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from L? to $? implies the substitution in Gi(x,, v,) of v,(x) by its
equivalent p(x)~D 2 ,cw,(%), and (5) now changes to

lim Gi(%n, vs) = Gi(#, D) = Pi(®, 1,82y * * )

>0
for any {x,,} &I and { v,.} € 9?2 for which lim,.,.%, =% and lim,.4Cn»
=¢, v=1, 2, - - - . From the full continuity of the G; thus follows
the full continuity (Vollstetigkeit)? of the P;. It is just as easily seen
that the converse also holds true.

3. Construction of a solution of the integral equation. In the G; we
now admit as arguments v, only aggregates of the form 9,(x)
=> "1 cow,(x) with D ", &, = N?for every fixed n. The functional

(6) J(va) = 2 [ f(x)v.(x)dx + {;: e;fG;(x, v,,)'v,,(x)dx]

t=l

—here the e; denote finite numbers to be determined later—is now a
continuous function of the c,, and so has at least one minimum. Let
Cww=0n (=1, 2, - - -, 1) be the minimal coordinates:

(1) minJ() = do = J(@)r én(®) = 3 awmn(a), o= N

yeml

As a consequence of (7) we have?

a 1 n
(8) I:J(v,.)+_<]vz_zc:“] =0, v=12-+++,n.
Cus s ey P
However,

aﬁv) =2[ffw»dx+ ;e.-ff

oF;
fK.- Un 3 + w,,Fg) dxdsy « + -+ ds; |.
cnl’

We must now make the following assumption: The F; satisfy the linear
integrodifferential equations

o [f - fx[e

2 See D. Hilbert, Grundziige einer allgemeinen Theorie der linearen Integralglei-
chungen, 1912, p. 177. A fully continuous function P(x, ¢, ¢s, * * + ), where x &I and
2o i6r SN2, is bounded.

3 In (8), 1/\s denotes Lagrange’s multiplier for the extremum problem under con-
sideration. As will be shown subsequently, A, 0 for every %.

oF;
P) el (1 bl e,')'w,,F;] dxds1 LU dsi =0
[

ny
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for all arguments v, = \CnyW,, tdentically in the c.,.
In this case we obtain

Yoo (o e

and (8) leads to

(10) Qpy = )\nfG(x, bu) wydx, y=1,2,++,m,
with
G(x, ¢a) = f(x) + Zf s fK.-(x, S1y0 0ty 89)

Fi(s, + ++ ) S On(s1), -+ -, ¢n(3i))d~91 <o dsi

On account of @, = [¢p,w,dx the relations (10) may be written as

(11) f((b,. — MG(x, ¢u))widx = 0 forr=1,2,-++,n.

Equations (10) show that the |>\,. have a common positive lower
bound: multiplication of (10) by @, and summation for v=1, - - -, n
result in

(12) N2=, f G(%, du)Puds.

But since G(x, ¢,) is a fully continuous function of the a,, for x&EI
and ¢,EH? it is bounded: there exists a § >0 such that

| G(x, ¢a) | < N/(b — a)¥% for every n.

< [ f G (=, m)dx]m [ f ¢de]”2 < N/,

whence || 28>0 for every n.

Now the [¢2dx all have the same value N2. This property of the
sequence {q&,.} guarantees the existence of a ¢(x)—defined almost
everywhere in I and possessing a Lebesgue integrable square—which
is the W-lim of a suitably chosen subsequence {qbn} of {q&,.} )4

Therefore

f G(#, bx)buds

4 Friedrich Riesz, Untersuchungen iber Systeme integrierbarer Funktionen, Math.
Ann. vol. 69 (1910) p. 467. The sequence {7z} is determined by Hilbert's diagonal
method (see, for example, Hellinger-Toeplitz, Encyklopidie der mathematischen
Wissenschaften vol. I1 C 13, p. 1405).
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(13) W-,};n’lal° ¢a(x) = ¢(2);

because the system {'w,.} is closed & is determined uniquely almost
everywhere in I. On account of (4), [$%(x)dx S N2.
We are now going to show that

(14) iim [ GG, 6203 = [ G(a, B

n—ro

Since

\ [ 6t 93z ~ [ 60, gargsa

< \ [ 6. 9@ - o1as

+ l [ 6 ® = 60, sreat

and the first expression on the right hand side—by (13)—may be
made as small as desired by taking 7 sufficiently large, only the second
term remains to be considered. Now

[ 6 & ~ 6w seaas| s v [ [0 9 - 6m ¢;)>2dx]m,

and so (14) will be proved if we can show that lims..[(G(x, )
—G(x, ¢s))2dx =0. This, however, follows immediately from the con-
vergence theorem of Lebesgue.® The sequence Ls =(G(x,8) —G(x, da))?
obviously satisfies the conditions of that theorem: (a) L, is Lebesgue
integrable; (b) Since | G(x,v) | S N/(b—a)¥25,| La| S4N?/(b—a)d?for
every #; (c) Because of the full continuity of G(x, v), lima..(G(x, &)
—G(x, ¢4)) =0. Therefore L=0, which proves (14).
We must now distinguish between these two cases:

I. There exists a 8’ >0 such that | [G(x, §)ddx| = N?/8';
II. [G(x, §)$dx=0.
Cask L. By (12), Aa=N?/[G(x, $a)padx, so that by (14)
A ol
1 1 N = = —
(15) P 1G(=, &)ddx

exists; because of I, |X]| S 4.

§ If a sequence of Lebesgue integrable functions La(x) possessing a common bound
has a limit function I(x), then I, too, is Lebesgue integrable and limp.,.fLa(x)dx
= [I(x)dx.
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If we now apply equations (11) to indices # only and then take the
limg4., we obtain

f B(2) — XG(x, &) ws(w)dz = 0 fory=1,2---.

Since the system of the { 'w,} is closed we may deduce § —AG(x, ) =0,
that is,

$(x) =X [f(x) +§f ct fKﬁ'(xv S1y 000y S.')
'Fi(slv oy Sy $(sl)v s, @(s))dsy - - dsi]

almost everywhere in I. We have thus obtained a solution ¢(x) of (1)
belonging to the finite eigenvalue X.

The previously derived relationship [$%(x)dx < N? may now be im-
proved: replacing G(x, &) in (15) by its equal (1/X)$ leads to
J&(x)dx = N2,

Cask I1. We write equations (10) for indices 7% only:
1
G(x, dn)wdx = — agy, v=12-.--,4,
f (2, ) Mo

and increasing 7 beyond any bound we obtain, since limg.  Ag=
and |as| SN,

fG(x, P wdx = 0, v=1,2,-

In this case ¢(x) may be considered a solution of (1) belonging to
A=o0,

4. The variational problem. We see, then, that @ is always a solu-
gon of (1). This function possesses another important property: If
$? denotes the class of all v(x)~2_ 6w, (x) with Y4y =N?, and

B(x) ~ i dw,(x) with &, = f&(x)w,(x)dx,

then 6 minimizes J(b).

To prove this we notice first that J(v,) results from J(b,41) if
we put ¢.11=0. Let d. be the minimum of J(v,) in 2 Then obvi-
ously dn2d,1. Let, further, d be the minimum of J(bv) for vEH?;
then d,2d for every n. Therefore, if d=limg..ds=J(0), we get d=d
or d =d -7 with 7 =0. We shall show that 7 =0.
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Since d is the lower bound of J(v) in §? there exists a p(x)
~X b, (x) in § so that J(p) =d—0y with 0<0=1. If, now, €>0
be chosen as small as desired, there is, because of the full continuity
of J(b), a >0 and an index 7 such that IJ(D) —J(p)l <¢ for every
PES?, so long as Ic,—-p,l <béforv=1,2,--.,r. We take e=0y and
choose 7’ =7 large enough to have Y h..p?=N’2>N2. N?/(N+8)2.
Then the vector §(x) =2 5., 5,w,(x) with 5, =(N/N’)p, belongs to §?,
and since N’ > N?/(N+39),

| —p| =|p| /N —1) S NWV/N —1) <6

for v=1, 2, .- -, . We may, therefore, conclude that |J ®)—J (p)l
<6n or J(p) <J(p)+6n=4d. But d,» £ J(§), and so d,» <d.

By now choosing %, #=7', such that ds <d, we get d4 Sd, a rela-
tion which contradicts the fact that the sequence da converges to d
from above. Thus we see that 7=0 or d = J ().

5. Solution of the integrodifferential equation. It is easy to verify
that equations (9) are fulfilled if we put e¢;=1/(¢+1), K; continuous
and

Ki(x’51v°'° y Sky * * * ssi) =K,'(Sk,81,°" y Xyt 15'3)1

k=1v2,"'1iv
F;(sl,--',s;,u1,~-~,u.‘)=a,'u1-~-u.-

fori=1,2, .. ,m.
It remains to be shown that functionals of the type

Q(=, v) =f -°-fK(x, Sty 000y $)v(s1) - - v(si)dsy - - - ds;

are fully continuous for x ©I and v € L2, Let us, therefore, assume that
{x.} €I, {v.} EL2, lima.tn =2, and W-lim,..v,=15. Then

| Q(x’ 77) - Q(xm ‘0”) I = l Q(&, 7-)) - Q(x! vn) I + l Q(xr ”n) - Q(xm ‘0,.) |
S| [ [ RG slsed o

— 0(S1) + + » Va(s) |ds1 e - - dsq

+|f---f[K(:E,s;,-~-,Si)

— K(%ny S1,+ * * 5 83) |0a(51) * + + vn(s)dsy -+ - ds;|.
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Because of the continuity of K the second term on the right-hand side
may be made arbitrarily small by choosing # sufficiently large. In
order to show that the same applies also to the first term we continue
as follows:

I f f K[a(s)) - - - 5(s) — vn(ss) - - - 0a(s) sz - - - s

— l f P K i 1')(51) .o ‘T)(Sk...l) [‘7)(51:) - 'D”(Sk)]

K1

Un(Sky1) * + * Oa(s)dsy - - - ds;

f . f(f K [9(si) — va(sw) ]dsk)

B(s1) * » + W(Sk—1)Vn(Sky1) * * * Va(si)dsy -+ - ds;

SRS (s -

1/2
edsy -+ + dSk_1dSiir -+ - ds,-} N1,

5>

k=1

Since W-limp.o¥n="5, lima.o(/K[5(sk) —va(ss)]dsi) =0, and since
IfK(aB, S, v 0, 85 [9(sw) —-v,.(sk)]dskl §2N(b—a)-male| , We see
that the sequence of Lebesgue integrable functions (K (%, s1, - * -, i)
- [3(sx) —va(sz) Jdsz)? has a common bound and the limit function
zero. By Lebesgue’s convergence theorem we may conclude that

2
lim f cee f(f K[t‘)(sk)-—-v,,(s,,)]dsk) dsy -+ + dsg_1dSpy1 -+ + dsy=0
7—> 0

for k=1, 2, - - -, 4, so that the proof of the full continuity of Q(x, v)
is now complete.

6. A special case. The deductions of §4 are therefore applicable
to the integral equation

o(x) =\ [f(x) +:Ela;‘f s fKi(x; S1y 0ty S3)
cb(s) - -+ d(s)dsy e - - ds,-].
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If we assume that an=1, a;=0fori=1, 2, - - -, m—1, thatis, if we
consider

(%) = %[f(x) +f . °me(x, Sttty Sm)
'¢(31) S ¢(8m)ds1 [T dsm:l,

we know that it has at least one solution, and that this solution may
belong to a finite or an infinite eigenvalue. The homogeneous equation

(%) = )‘f e me(xv S1y 00, Sm)¢(81) e ¢(sm)d51 <o dsm,
however, has always at least one finite eigenvalue. In this case namely
(see (6))

J(v,) = ZerG,,.(x, 9,) V(%) dx,
so that
N2
m+ 1 . )

dy = ——— [ Gl bu(2)dz =
n—m+1 (%, On)Pn(x)dx =

or

Anvdn = (2/(m + 1))N2'

But since the functional

co(sy) ¢+ + - v(sm)dxdsy c -+ dSm,

K..#0, vEH?, certainly has a minimum d differing from zero,

% = lim g = —-
T T im0

is finite.

CARLETON COLLEGE



