ON SOME SPECIAL DIOPHANTINE EQUATIONS
E. ROSENTHALL

1. Introduction. The following lemma is fundamental in the algo-
rithm of reciprocal arrays for the solution of multiplicative diophan-
tine equations in certain arithmetics as developed by E. T. Bell.?

LemMA 1. AUl sets of integers satisfying the diophantine equation

xy = 2w
are given by

x = ab, y = cd, 2 = ad, w = cb
and it suffices to take b and d coprime.

Rational arithmetic and the theory of ideals in an algebraic number
field provide instances of these arithmetics, and in all cases the funda-
mental theorem of unique decomposition into prime factors is re-
quired.

By use of this algorithm Bell has obtained the complete solution
of a large class of diophantine equations, and by means of an applica-
tion of Lemma 1 (and results derived from it) to equations reducible
in particular algebraic number fields the present writer has obtained
the complete solution of some interesting diophantine equations.

In this paper Lemma 1 is generalized to an arbitrary algebraic
field, and the method of proof is then applied to a multiplicative equa-
tion from which we immediately obtain a formula exhibiting all the
rational integers satisfying x?+4ay?=3z?+1, The procedure is to re-
place the algebraic indeterminates in the given multiplicative equa-
tion by the principal ideals they generate; then solving this equation
by the method of arrays we obtain the solution in terms of ideals.
In this solution, by a use of properties of equivalent ideals all the
ideals are replaced by suitable principal ideals and the complete solu-
tion of the given equation is deduced.

2. Notations. We shall adhere to the following notations: small let-
tersa, b, - - - are reserved for the rational integers, the capital letters
A, B, - - - (except E) for integers of the algebraic number field §;
the letter € will be reserved for the units of this field, and all other
Greek letters (with or without subscripts) will denote ideals of §.
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Parentheses enclosing a letter denote the corresponding principal
ideal; thus (X), (e), - - - . The conjugates of the ideal £ are repre-
sented by £/, £/, - . -, £=D, Two ideals, @ and B, are said to be
equivalent if an ideal v exists such that the products ey, By are both
principal ideals; the equivalence of o and B is expressed by a~.

3. Generalization of Lemma 1. We shall now prove the following
result.

TuaEOREM 1. All integers X, Y, Z, W satisfying
3.1) XY =ZwW
are given by
X = ST/e, Y=UV/e, Z=SV/e, W = UT/e,

where S, T, U, V are arbitrary and e takes only the finite set of rational
integral values each equal to the norm of a representative ideal from each
class.

Proor. By Lemma 1 all solutions of
(3.2) (X)(¥) = @)(W)
are obtainable from
X)=af, @) =15 (©@2)=a, (W) =18

and the ideals of the right-hand members must be restricted to the
values which make the left-hand members principal ideals. Since the
products of3, vB are to be principal ideals then a~y. Let £ be a repre-
sentative ideal of each class in which « is a member. Then a~§ and
it follows that

QF'E e D gL gD = (),

Hence af’£" - - - £=D and consequently y£’E'/ « . - £(—D s equiv-
alent to a principal ideal and must therefore itself be a principal
ideal (4). Therefore,

(eX) = ot - - - £V = (A)EB

whence £8 is a principal ideal. Put £8=(B) and we have (¢X) =(4B).
Also

(e¥) = & - - - £ Vys = (O)86 = (O)(D)

since £6 must be a principal ideal (D).
Thus all solutions of (3.2) are obtainable from
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(eX) = (AB), (e¥) = (CD), (eZ) = (4D), (eW) = (CB).
This implies that the set of all integers satisfying (3.1) is given by
eX = ¢AdB, eV = eCD, eZ = e3AD, eW = e,CB,

where €62=e3¢;. Make the reversible substitution 4 =¢1S, B=T,
D=ee'V, C=¢1U and we have the required result.

4. The equation XX =z2*!, Hereafter the field § is an arbitrary
quadratic number field and the conjugate of an integer X and an ideal
a are denoted by X and a respectively.

The following theorem will be verified by induction.

THEOREM 2. All solutions of
ax = (z2n+1)

are given by

2n41 2n 2n—1 nt+l _n

a =1 ¢s Babs Bsc o deriburn  (8) = dsBubadr - Guribai.

From this we can deduce the following result.?

THEOREM 3. All solutions of
@.1) XX = gntl
are given by

E™'X = + BYVHH, - - HiHus
E's = HHHH, -+ HypiHops,
n+1_n

where E=¢5t'e} - - - €2; ey, €2, - - -, €, each being equal to the norm of
a representative ideal from each class.

(4.2)

If we put X =x-+4(—a)¥?y, then (4.1) becomes x2+ay?=3z2"+! and
equating rational and irrational parts we obtain from (4.2) an ex-
plicit representation for all rational integers satisfying this equation.
Although in general the solution appears in rational form, yet for
each value of @ the indeterminates x, ¥, 2 can be expressed by a finite
number of polynomials in integral parameters. For, for each value
of a the parameter E has only a finite set of integral values and the
requirement that the right-hand members of (4.2) be divisible by

2 For an account of the investigations on equation x2-+ay?=2" see L. E. Dickson,
History of the theory of numbers, vol. 2, pp. 534-543; Th. Skolem, Diophantische
Gleichungen, Berlin, 1938, pp. 64-68; J. V. Uspensky and M. A. Heaslet, Elementary
number theory, 1939, pp. 389-396.
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E?»+1 E?2 respectively may be expressed by congruential conditions
upon the coordinates of the integers H;.

ExaMpPLE. From Theorem 3 it follows that all the rational integers
satisfying x2+47y2=2% are given by

Ew+ (- 40)""y) = + B0 ,,  E's = HHLH,,

where E=e?=1, 22, 32 and H,, H, are integers of Ra(—47)'2% It
suffices to take H; primitive.

In order to select all integers from the above rational forms of
x, ¥, 3, it is necessary and sufficient to impose the following congru-
ential conditions upon the coordinates of Hy=r-+sW, Hy=m+nW
where W= (14(—47)1%)/2:

(i) E=1. If n even then 7, s even; otherwise no restrictions on 7, s.

(ii) E=22 m odd, % even, s=2r=0 (mod 8); m—4n=2 (mod 4),
r=5=0 (mod 4); m—4n=4 (mod 8), r=5=0, 2 (mod 4); m—4n=38
(mod 16), r=s5s=0, 2 (mod 4); m—4n=0, +16 (mod 64), r=s (mod
2); m—4n=32 (mod 64) requires no restriction on 7, s.

m odd, m+52=2 (mod 4), r=s=0 (mod 4); m+5n=4 (mod 8),
r=s=0 (mod 4); m+5#=8 (mod 16), r=2s (mod 4); m+51=0,
+16 (mod 64), r even; m-+452=32 (mod 64) requires no restriction
on ¢ and s.

(iii) E=32% m(m+n)#£0 (mod 3), r=s=0 (mod 9); m—6n=+3
(mod 9), r=s=0 (mod 9); m—6n=+9 (mod 27), r+s=0 (mod 9);
m—6n=0 (mod 27), but m—114n#0 (mod 3%), r4+s=0 (mod 3);
m—114n=0 (mod 3%) requires no restriction on 7 and s.

m+Tn=213 (mod 9), r=s=0 (mod 9); m+7n=+9 (mod 27),
r=35s=0 (mod 9); m=+7n=0 (mod 27) but m-+1152£0 (mod 3°),
r=0 (mod 3); m+1152=0 (mod 3%) requires no restriction on 7 and s.

If in addition to the above # is even then  and s must both be even.

The above conditions were obtained by considering in turn the
cases according as H,H, is divisible by ey, €2, « - -, €.

For the proof of Theorem 2 we use the following two lemmas.

LemMA 2. All solutions of aa=vBB are given by o=0,0,05, B=0.0:,
Y= 0305.

LeMMA 3. Al solutions of aa =0y are given by o= 01050504, 3 = 0,0,050s,
Y= 51020454.

The proof for Lemma 2 is exactly as given in a previous paper?
where the indeterminates were integers of a unique factorization

3 E. Rosenthall, On some cubic diophantine equations, Amer. J. Math. vol. 65 (1943)
pp. 664-665.
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quadratic field ; Lemma 3 follows immediately by a repeated applica-
tion of Lemma 1.

5. Proof of Theorem 2. We now show independently that Theo-
rem 2 holds for =1 and then complete the proof by mathematical
induction. From Lemma 2 it follows that all @, (2) satisfying aa= (%)
are obtainable from

a = 0,050, (2) = 6102 = 0405,
and applying Lemma 3 it follows that
03 = NiNalshy, 61 = NA2Ashs, 02 = A\aAdha
Then
a= ¢>:¢22$2, (2) = ¢1810262,

where we have put A1 =¢1, AAshs=¢2 since Az, N, A\s always appear in
this product form.
Now consider the induction from n=s to n=s+1. Apply Lemma 2
to ad = (z2¢+3) = (222+1)(2)(2). Then
a = 0,0,03, (2) = 01, (g2+1) = 0503
By hypothesis, Theorem 2 holds for the last equation. Hence

2841 23_ a+l_c _ _ -
03 = w1 Mo s+ * ¢ Mer1fet (Z) = Mol ¢ ¢ Mst1Msi1;

and equating the two parametric representations for (z) we obtain the
following equations for all the parameters concerned,

{ﬂlm cee ua+1} {ﬁ1ﬁ2 cee ﬁa+-1} = 610..
Applying Lemma 3,
MiMg * 0 Met1 = Nihahghy, 01 = MAg\shs, 2 = XNl

Substituting these values of the parameters in the preceding formulas
for o, (2) gives

2.2 28+1 28 1 8 - -
(5.1) a= MWl * Mo - P‘:ilﬁa+1’ (3) = MM Al

where the parameters must satisfy the multiplicative equation
(5.2) Kipz * * ¢ Msr1 = MYy,

where we have put A\ =y1.
Applying the method of arrays! to (5.2) we obtain

4 See E. T. Bell, los. cit., p. 62.
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p1 = Emily, M= &ba- - Eopay
w2 = Emale, N = iz * * * Net,
e e e e e e , P Y U

Bet1 = Esp1st18at1.
Finally, substituting in (5.1) gives

2848 2842 &+3 _8 8+2 _s+1
a=¢1 ¢z Pz Poy1Per1Pst2Pore,  (2) = P1P12Ps ¢ ¢ ¢ DaroPetes
where we have put £&1=¢1, £§1=0, {et1sfer1 =P o2, and Eiania =
for ©=3, 4, - - -, s+1, since the parameters always occur in these
product forms. This completes the induction.

6. Proof of Theorem 3. All solutions of
(6.1) XX) = (a2
are obtainable from

(6.2) (X)) =1 drdar- bmibuins (3) = diPrbada*  + Snrbarn
and the ideals of the right-hand members must be restricted to those
values which make the left-hand members principal ideals. From
(6.2), it follows that ¢3**1¢2*~! . . . pppu~(1). Let & (6=1,2, - - -, n)
be a representative ideal from each of the classes in which ¢; is a mem-
ber. Then we can put ¢:fi=(H;) and £ . . . B¢,1=(Hnp1).
Multiplying both sides of (6.2); by [{ &} whtfpB e o EE, ) 2]
and (6.2); by [{E;él}”‘”{‘ézé}” «++ {£.Ea}12]? and also putting £
= (e;) we obtain

2n+1 2n+1__2n. nt+le—n

(E""X)=(H, HyHy--+ HyprHnpa),
(E2Z) = (H1H1H2-ﬁz cee Hn+1ﬁn+l)

for all solutions of (6.1). This implies that all solutions of (4.1) are
given by

2n+1 2n+1__ 21— A+leen

E X=eH, HyH;:+- HypaHuyy, E's = eH\H, + + + HopaHoga

Make the reversible substitution H,1= &H,41, and then observe that
€26:& must be unity. Hence Theorem 3 is proved.
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