
ON SOME SPECIAL DIOPHANTINE EQUATIONS 

E. ROSENTHALL 

1. Introduction. The following lemma is fundamental in the algo­
rithm of reciprocal arrays for the solution of multiplicative diophan-
tine equations in certain arithmetics as developed by E. T. Bell.1 

LEMMA 1. All sets of integers satisfying the diophantine equation 

xy = zw 
are given by 

x = ab, y = cd, z = ad, w = cb 

and it suffices to take b and d coprime. 

Rational arithmetic and the theory of ideals in an algebraic number 
field provide instances of these arithmetics, and in all cases the funda­
mental theorem of unique decomposition into prime factors is re­
quired. 

By use of this algorithm Bell has obtained the complete solution 
of a large class of diophantine equations, and by means of an applica­
tion of Lemma 1 (and results derived from it) to equations reducible 
in particular algebraic number fields the present writer has obtained 
the complete solution of some interesting diophantine equations. 

In this paper Lemma 1 is generalized to an arbitrary algebraic 
field, and the method of proof is then applied to a multiplicative equa­
tion from which we immediately obtain a formula exhibiting all the 
rational integers satisfying x2+ay2=z2n+1. The procedure is to re­
place the algebraic indeterminates in the given multiplicative equa­
tion by the principal ideals they generate ; then solving this equation 
by the method of arrays we obtain the solution in terms of ideals. 
In this solution, by a use of properties of equivalent ideals all the 
ideals are replaced by suitable principal ideals and the complete solu­
tion of the given equation is deduced. 

2. Notations. We shall adhere to the following notations: small let­
ters a, b, • • • are reserved for the rational integers, the capital letters 
Af By • • • (except E) for integers of the algebraic number field %; 
the letter e will be reserved for the units of this field, and all other 
Greek letters (with or without subscripts) will denote ideals of $. 
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1 E. T. Bell, Reciprocal arrays and diophantine analysis, Amer. J. Math. vol. 35 
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Parentheses enclosing a letter denote the corresponding principal 
ideal; thus (X), (e), • • • . The conjugates of the ideal £ are repre­
sented by £', £", • • • , £(n-x>. Two ideals, a and /3, are said to be 
equivalent if an ideal y exists such that the products ay, /3y are both 
principal ideals; the equivalence of a and /3 is expressed by a~fi. 

3. Generalization of Lemma 1. We shall now prove the following 
result. 

THEOREM 1. All integers X, F, Z, W satisfying 

(3.1) XY = ZW 

are given by 

X = ST/e, Y = UV/e, Z = SV/e, W = UT/e, 

where S, T, U, V are arbitrary and e takes only the finite set of rational 
integral values each equal to the norm of a representative ideal from each 
class. 

PROOF. By Lemma 1 all solutions of 

(3.2) (X)(F) = (Z)(W0 

are obtainable from 

(X) - ap, (F) = yô, (Z) = «8, (W) = yfl, 

and the ideals of the right-hand members must be restricted to the 
values which make the left-hand members principal ideals. Since the 
products a/3, 7/3 are to be principal ideals then a ^ y . Let { be a repre­
sentative ideal of each class in which a is a member. Then a ~ £ and 
it follows that 

aft" • ' ' £ < " ^ > ~ 8 ' - •• É*—1* = (e). 

Hence a£ '£" • • • è(n~1\ and consequently Y £ ' £ ' ' • • • &n~l\ is equiv­
alent to a principal ideal and must therefore itself be a principal 
ideal (A). Therefore, 

(eX) = afö? • • • É*»-1* = (;4)â8 

whence £/3 is a principal ideal. Put %/3=(B) and we have (eX) = (AB). 
Also 

(eY) = # ' • • • {<«-»78 = ( Q # = (0(J3) 

since £5 must be a principal ideal (D). 
Thus all solutions of (3.2) are obtainable from 
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(eX) = (AB), (eY) = (CD), (eZ) = (AD), (eW) = (CB). 

This implies that the set of all integers satisfying (3.1) is given by 

eX = etAB, eY = e2CD, eZ = ezAD, eW = e4tCB1 

where €i€2 = €3e4. Make the reversible substitution A = ef^S, B = T, 
^ = ci€r1F, C = e r r a n d we have the required result. 

4. The equation XX = z2n+1. Hereafter the field g is an arbitrary 
quadratic number field and the conjugate of an integer X and an ideal 
a are denoted by X and â respectively. 

The following theorem will be verified by induction. 

THEOREM 2. All solutions of 

act = (z2n+l) 

are given by 

2n+l 2n 2n—1 2 n-j~l n . . 
ÛJ = 0 i 02 9203 93 * ' * 4>n+l <Pn+lt \Z) = <£l9l#2p2 * ' ' 0n+l9n+l» 

From this we can deduce the following result.2 

THEOREM 3. All solutions of 

(4.1) XX = z2n+1 

are given by 

2n+l 2n+l 2n_- T T ^ ^ T » 
21 A — X U I " 2 i l 2 * * ' £Ln+lHn+l 

(4.2) 2 _ - _ 
JE 21 = H1H1H2H2 • • • Hn+lBn+h 

where E = en
x
+le^ - • - e%; ei, e2, • - - , en each being equal to the norm of 

a representative ideal from each class. 

If we put X = x+( — a)ll2y} then (4.1) becomes x2+ay2 = z2n+1 and 
equating rational and irrational parts we obtain from (4.2) an ex­
plicit representation for all rational integers satisfying this equation. 
Although in general the solution appears in rational form, yet ïor 
each value of a the indeterminates x, y, z can be expressed by a finite 
number of polynomials in integral parameters. For, for each value 
of a the parameter E has only a finite set of integral values and the 
requirement that the right-hand members of (4.2) be divisible by 

2 For an account of the investigations on equation x2-\-ay2=*zn see L. E. Dickson, 
History of the theory of numbers, vol. 2, pp. 534-543; Th. Skolem, Diophanttsche 
Gleichungen, Berlin, 1938, pp. 64-68; J. V. Uspensky and M. A. Heaslet, Elementary 
number theory, 1939, pp. 389-396. 
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E2n+1, E2 respectively may be expressed by congruential conditions 
upon the coordinates of the integers Hi. 

EXAMPLE. From Theorem 3 it follows that all the rational integers 
satisfying x2+47y2 = zz are given by 

E\x + ( - 47)17V) = ± HÎHÎffî, E\ = HXHXHJIÎ, 

where E=e? = l, 22, 32 and Hh H2 are integers of i ?a ( -47)^ 2 . I t 
suffices to take Hi primitive. 

In order to select all integers from the above rational forms of 
x, y', z, it is necessary and sufficient to impose the following congru­
ential conditions upon the coordinates of Hi = r+sW, H2=m+nW 
where TF=( l + ( -47) 1 / 2 ) /2 : 

(i) £ = 1. If n even then r, 5 even; otherwise no restrictions on r, s. 
(ii) E = 22. m odd, n even, $ s s 2 r s 0 (mod 8); m—4w==2 (mod 4), 

r = ^ = 0 (mod 4); m — 4^s=4 (mod 8), r=5 = 0, 2 (mod 4); m—4w = 8 
(mod 16), r==s=s0, 2 (mod 4); tn—4^ = 0, ±16 (mod 64), r = s (mod 
2); m —4WH=32 (mod 64) requires no restriction on r> s. 

m odd, m+5n = 2 (mod 4), f = s = 0 (mod 4); m + 5 w = 4 (mod 8), 
Y=s = 0 (mod 4); w+5^s=8 (mod 16), rs=2s (mod 4); m+SwsO, 
±16 (mod 64), r even; m+5^ = 32 (mod 64) requires no restriction 
on r and s. 

(iii) E = 32. w ( m + w ) ^ 0 (mod 3), r=s==0 (mod 9); m — 6 w s ± 3 
(mod 9), r s 5 = 0 (mod 9); w - 6 r c = ± 9 (mod 27), r + s = 0 (mod 9); 
w ~ 6 w s 0 (mod 27), but m-lUn^O (mod 36), r + s = 0 (mod 3); 
ra —114w = 0 (mod 36) requires no restriction on r and 5. 

m + 7 w = ± 3 (mod 9), rs=s = 0 (mod 9); w+7w==±9 (mod 27), 
r==3s = 0 (mod 9); m + 7n^0 (mod 27) but m + H 5 n ^ 0 (mod 36), 
r = 0 (mod 3) ; m +115^ = 0 (mod 36) requires no restriction on r and s. 

If in addition to the above n is even then r and 5 must both be even. 
The above conditions were obtained by considering in turn the 

cases according as H2B2 is divisible by eu e\> • • • , e\. 
For the proof of Theorem 2 we use the following two lemmas. 

LEMMA 2. All solutions of aâ=7j3j5 are given by a = 010203, i3 = 0i02, 
7 = 0303. 

LEMMA 3. All solutions of aâ=^y are given bya = 01020304, j3 = 01020303, 
y = 01020404. 

The proof for Lemma 2 is exactly as given in a previous paper8 

where the indeterminates were integers of a unique factorization 
8 E. Rosenthall, On some cubic diophantine equations, Amer. J. Math. vol. 65 (1943) 

pp. 664-665. 
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q u a d r a t i c field ; L e m m a 3 follows immedia te ly by a repea ted applica­
t ion of L e m m a 1. 

5. Proof of Theorem 2. W e now show independen t ly t h a t T h e o ­
rem 2 holds for n = 1 and then comple te t he proof b y ma themat i ca l 
induct ion . F r o m L e m m a 2 i t follows t h a t all a , (0) satisfying aâ = (s8) 
are ob ta inab le from 

a = 0l#203, W == 0102 = 0303» 

and app ly ing L e m m a 3 i t follows t h a t 

03 s=s X1X2X3X4, 01 = X1X2X3A3, 02 == XlX2X4X4» 

T h e n 

a = <£i<£2<?2, (2) = #i<s5i$2<5?>2j 

where we h a v e p u t Xi = <£i, %J<z\i=<t>2 since X2, X3, X4 a lways appear in 
th is p roduc t form. 

N o w consider t he induct ion from n — s ton = s + l. Apply L e m m a 2 
to aâ = 02*+3) = 0 2 8 + 1 ) (s) (0). T h e n 

a = 010203, 0 ) = 0i02, (*28+1) = 0303. 

B y hypothes is , T h e o r e m 2 holds for t h e las t equa t ion . Hence 

2s-fl 2s _ «+1 8 . 
03 = Ml M2 M2 ' ' ' M«+l/*a+l» (2) = MlMlM2M2 * * ' Ms+lMs+lî 

a n d e q u a t i n g the two pa rame t r i c representa t ions for (z) we obta in t he 
following equa t ions for all t he pa r ame te r s concerned, 

{MIM2 * • • /M-i} {MIM2 • • • M«+iJ = 0102. 

Apply ing L e m m a 3, 

MlM2 * * * Ms+l = X1X2X3X4, 01 = X1A2X3A3, 02 = A1X2X4A4. 

Subs t i t u t i ng these values of t he pa r ame te r s in the preceding formulas 
for a , (z) gives 

(5.1) a = XiÂ2^i^iMi M2P2 • • • Ms+iMs+i, (2) = XiAiX2A2^i#i, 

where t h e p a r a m e t e r s m u s t satisfy t he mul t ip l ica t ive equa t ion 

(5 . 2) M1M2 • • • /M-i = XiX2^i, 

where we have p u t X3X4 = ^ 1 . 
Apply ing t h e m e t h o d of a r rays 4 to (5.2) we obta in 

4 See E. T. Bell, loc. cü.} p. 62. 
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Xi = t i b • • 

X2 = rjirj2 • • 

^1 = f if 2 • • 

• £«+i> 

• Va+h 

* £•+!• 

Ml = £i*?ifi> 

M2 ==: ^ 2 ^ 2 » 

Ms+1 = £s+l*?a+lf*+l» 

Finally, substituting in (5.1) gives 

2«+3 2«+2 «+3 a 8+2 8+1 

ÛJ = 0i 02 92 ' * * 0«+10s+10a+20s+2> (2) = 01910292 * * * 0«+20*+2> 

where we have put £i=0i , ^ 1 = ^ 2 , f H-I?7«*7«+I=08+2, and %£i-ir)i-2~<l>i 
for i = 3, 4, • • • , 5 + 1 , since the parameters always occur in these 
product forms. This completes the induction. 

6. Proof of Theorem 3. All solutions of 

(6.1) (X)(X) = («•"+!) 

are obtainable from 

(6.2) (X) = 01 02 <?2 • # * 0 n + l $ w + l > W = 01<?102<?2 * ' * 0n+l<?n+l> 

and the ideals of the right-hand members must be restricted to those 
values which make the left-hand members principal ideals. From 
(6.2)i it follows that 0f+102w~1 • • • 0 n + i ~ (1). Let fc ( i = l , 2, • • •, n) 
be a representative ideal from each of the classes in which 0» is a mem­
ber. Then we can put 0 & = (#i) and g*1^-1 • • • ^0w + i=(£Tw + i) . 
Multiplying both sides of (6.2)i by [{?i£i}n + 1{&Mn • • - { U « } 2 ] 2 n + 1 

and (6.2), by [{^ih}n+1{^h}n • • • U»£«}2]2 and also putting fcfc 
= (fii) we obtain 

(Ein+l
X) = (flf^rfff, • • • nS&u 

(22 0) = (H1H1H2H2 # • * -Sn+l#n+l) 

for all solutions of (6.1). This implies that all solutions of (4.1) are 
given by 

£ A = €1^1 JO2 n 2 • • • Hn+iHn+i, Jb z = €2121/21 • • • i / n + i / / n + i . 

Make the reversible substitution i2»+i= iiffn+i, and then observe that 
€26161 must be unity. Hence Theorem 3 is proved. 
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