CONTRACTIONS IN NON-EUCLIDEAN SPACES

F. A. VALENTINE

The existence of an extension of the range of definition of a function f(x) defined on a set S of a metric space M to a metric space M' so as to preserve a contraction of the type

(1)
$$||f(x_1), f(x_2)||' \leq ||x_1, x_2||$$

depends upon M and M'. The author has previously shown $[3, 4]^1$ that for M = M' the extension exists when M is: (1) the n-dimensional Euclidean space; (2) the surface of the n-dimensional Euclidean sphere; (3) the general Hilbert space. In this brief article the extension is shown to exist when each M and M' is the n-dimensional hyperbolic space. The method used to prove this result is applied to a metric space which includes both the hemispherical and hyperbolic cases. Hence a unification of results is also obtained.

As shown in the previous papers [3, 4] a necessary and sufficient condition for a contraction to be extensible in M and M' is the property E, which is restated as follows.

PROPERTY E. Consider in each of the metric spaces M and M' a set of spheres, such that to each sphere $S_i \in M$, having center x_i and radius r_i , there corresponds a sphere $S_i' \in M'$, having center x_i' and radius r_i' . Furthermore suppose that

(2)
$$r_i = r'_i, \\ ||x'_i, x'_j||' \leq ||x_i, x_j||$$

for all corresponding spheres S_i and S'_i , and for all corresponding pairs (S_i, S_j) and (S'_i, S'_j) .

The spaces M and M' are said to have the extensibility property E if conditions (2) and

$$(3) \qquad \prod_{i} S_{i} \neq 0$$

imply that

$$(4) \qquad \prod_{i} S'_{i} \neq 0.$$

If the above statement holds for M = M', the space M is said to have property E.

Presented to the Society, April 29, 1944; received by the editors February 18, 1944.

¹ Numbers in brackets refer to references at the end of the paper.

For convenience of discussion let M be an n-dimensional metric space which can be imbedded in an (n+1)-dimensional Euclidean space R. Let R_i be the Euclidean vector emanating from the origin of R to the point $x_i \in M$. It is assumed that there exists a symmetric real-valued bilinear product $R_i \cdot R_j$ such that $R_i \cdot R_i = k^2 = \text{const.}$ defines the metric space M. Suppose that for any two points x_i and x_j in M, R_i and R_j determine a Euclidean plane which intersects M in a unique continuous curve joining x_i and x_j . This curve is defined to be a geodesic. Furthermore suppose the distance $||x_i, x_j||$ in M is defined to be

$$||x_i, x_j|| = F(R_i \cdot R_j) \ge 0,$$

where F(u) is either a single-valued increasing function of u or a single-valued decreasing function of u.

THEOREM 1. If the n-dimensional metric space M has the above properties, it possesses the property E.

PROOF. To prove this we consider the case F(u) is an *increasing* function of u. When F(u) is decreasing the proof is obtained by a uniform change in the direction of the inequality signs. On account of a theorem of Helly² type [2, 1], to prove Theorem 1 it is sufficient to establish property E for $i = 1, \dots, n+1$.

Let $\Delta(x_1, \dots, x_{n+1})$ be the simplex (degenerate or nondegenerate) in M determined by the points x_i $(i=1, \dots, n+1)$. Condition (4) implies that $\Delta(x_{i_1}, x_{i_2}) \cdot S_{i_1} \cdot S_{i_2} \neq 0$. If we have $\Delta(x_{i_1}, \dots, x_{i_{r+1}}) \cdot \prod_{j=i_1}^{i_{r+1}} S_j \neq 0$ $(i=1, \dots, n+1; 2 \leq r \leq n)$, then since by (4) $\prod_{j=i_1}^{i_{r+1}} S_j \neq 0$, the theorem of Helly³ type implies in the r-dimensional subspace that $\Delta(x_{i_1}, \dots, x_{i_{r+1}}) \cdot \prod_{j=i_1}^{i_{r+1}} S_j \neq 0$. Hence

(6)
$$\Delta(x_1, \dots, x_{n+1}) \cdot \prod_{i=1}^{n+1} S_i \neq 0$$

is established by induction. Suppose that $\Delta(x_1', \dots, x_{n+1}')$ is not covered by the spheres S_i' . Then choose x and x' so that

(7)
$$x \in \Delta(x_1, \dots, x_{n+1}) \cdot \prod_{i=1}^{n+1} S_i, \quad x' \in \Delta(x_1', \dots, x_{n+1}') - \sum_{i=1}^{n+1} S_i',$$

and let R and R' be the Euclidean vectors emanating from the origin

² The theorem states: If each n+1 sets of a family of closed bounded, convex sets of the n-dimensional Euclidean space intersect, then there is a point common to all the sets. For a more general topological theorem of the same type, see Alexandroff and Hopf [1, p. 297].

Loc. cit.

of \mathbb{R} to the points x and x' respectively. Conditions (2) and (5) yield the results

$$(8) R_i \cdot R_j \geq R'_i \cdot R'_j (i, j = 1, \dots, n+1).$$

Also conditions (7) and the first of conditions (2) imply that $||x'_i, x'|| > ||x_i, x||$. Hence by (5) we have

$$(9) R' \cdot R_i' > R \cdot R_i.$$

Since the line of shortest length joining x_i and x_j lies in the plane determined by R_i and R_j , the simplex $\Delta(x_1, \dots, x_{n+1})$ is contained in the smaller solid angle α determined by R_1, \dots, R_{n+1} . Hence condition (7) implies that R lies inside the solid angle α . A corresponding statement with primes holds for R'. Hence there exist real constants a_i and a_i' such that

$$a_i \ge 0, \qquad a_i' \ge 0, \qquad \sum_{i=1}^{n+1} a_i \ne 0, \qquad \sum_{i=1}^{n+1} a_i' \ne 0,$$

and such that

(10)
$$R = a_i R_i, \qquad R' = a_i' R_i' \qquad (i \text{ summed}).$$

Multiplying (8) by $a_i a_i'$, summing on i and j, one obtains

$$(a_iR_i)\cdot(a_i'R_i)\geq(a_iR_i')\cdot(a_i'R_i'),$$

whence by (10)

$$(11) R \cdot (a_i' R_i) \ge (a_i R_i') \cdot R'.$$

Similarly multiplying (9) by a_i , summing on i, we get

$$(12) R' \cdot (a_i R_i') > R \cdot R.$$

Conditions (11) and (12) imply that

$$(13) R \cdot (a_i' R_i) > R \cdot R.$$

However multiplying (9) by a!, we get

$$(14) R' \cdot R' = R' \cdot (a_i' R_i') > R \cdot (a_i' R_i).$$

Since $R \cdot R = R' \cdot R' = k^2$, conditions (13) and (14) are contradictory. Hence the assumption that $\Delta(x_1', \dots, x_{n+1}')$ is not covered by the spheres S_i' is false. Since $\Delta(x_1', \dots, x_{n+1}') \cdot S_i' \cdot S_j' \neq 0$, and since Δ is covered by the spheres S_i' , a theorem⁴ of Knaster, Kuratowski and

⁴ See Alexandroff and Hopf [1, p. 377]. The theorem states: If the closed sets A_i cover the simplex T, and if each side $a_{i_1} \cdots a_{i_r}$ of T is such that $a_{i_1} \cdots a_{i_r} \subset A_1 + \cdots + A_{i_r}$, then $A_1 \cdot A_2 \cdot \cdots \cdot A_{n+1} \neq 0$.

Mazurkiewicz implies by induction that $\prod_{i=1}^{n+1} S_i' \neq 0$. Since condition (4) now holds for each set of n+1 of the spheres S_i' , the theorem of Helly⁵ type implies that (4) holds for all the spheres S_i' .

We now readily prove the following corollary.

COROLLARY 1. The property E holds for the n-dimensional hyperbolic space.

For the hyperbolic space M this corollary is an immediate consequence of the fact that M can be defined as the points $(x_1, x_2, \dots, x_{n+1})$ in the (n+1)-dimensional Euclidean space which are on one sheet of the hyperboloid⁶

$$k^2x_1^2-x_2^2-x_3^2-\cdots-x_{n+1}^2=k^2.$$

Here $R_i \cdot R_j$ is defined to be the bilinear form

$$R_i \cdot R_j \equiv k^2 x_{i1} x_{j1} - x_{i2} x_{j2} - \cdots - x_{in+1} x_{jn+1},$$

and $F(u) = k \cosh^{-1}(u/k^2)$. These have the properties required for the proof of Theorem 1. A similar argument holds for the open hemispherical case.

The extensibility of f(x) to the whole space M so as to preserve condition (1) now follows as developed in the previous work of the author [3, pp. 105-106].

BIBLIOGRAPHY

- 1. Alexandroff and Hopf, Topologie, vol. 1, 1935, Julius Springer, Berlin.
- 2. E. Helly, Jber. Deutschen Math. Verein. vol. 32 (1923) pp. 175-176.
- 3. F. A. Valentine, On the extension of a vector function so as to preserve a Lipschitz condition, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 100-108.
- 4. —, A Lipschitz condition preserving extension for a vector function. To appear in Amer. J. Math.
 - 5. Coxeter H., Non-Euclidean geometry, Toronto, 1942.

University of California at Los Angeles

⁵ Loc. cit.

⁶ Coxeter [5, pp. 209, 248].