THE COMPACTNESS OF THE RIEMANN MANIFOLD OF AN ABSTRACT FIELD OF ALGEBRAIC FUNCTIONS

OSCAR ZARISKI

1. The existence of finite resolving systems. In an earlier paper¹ we have announced the result that the existence of a resolving system of the Riemann manifold of an abstract field of algebraic functions (in any number of variables) or—what is the same—the local uniformization theorem² implies the existence of finite resolving systems of the Riemann manifold. We have proved this result for algebraic surfaces by arithmetic considerations.¹ The proof for the general case of varieties, which at that time was in our possession,³ and which we have promised to publish in a subsequent paper, was of similar nature, that is, it was based upon considerations involving the structure of certain infinite sequences of quotient rings. However, we have succeeded lately in finding a much simpler proof which is based on topological considerations.

Let Σ be a field of algebraic functions of several variables, over an arbitrary ground field k. By the Riemann manifold M of Σ we mean the totality of places of Σ , that is, the totality of zero-dimensional valuations v of Σ/k . If V is a projective model of Σ/k , and if H is any subset of V, we denote by N(H) the subset of M consisting of those valuations v which have center in H. By a resolving system of M we mean a collection $\mathfrak{V} = \{V_a\}$ of projective models (finite or infinite in number) with the property that for any v in M there exists a V_a in \mathfrak{V} such that the center of v on V_a is a simple point.

The topology which we introduce in M is simply this: we choose as a basis for the closed sets of M the sets N(W), where W is any algebraic subvariety of any projective model of Σ . We prove that if topologized in this fashion, the set M is a compact topological space. From this the result announced above follows immediately. For if $\{V_a\}$ is a resolving system, and if we denote by S_a the singular locus of V_a , then $N(V_a - S_a)$ is an open set and $\{N(V_a - S_a)\}$ is an open covering of M.

Received by the editors April 10, 1944.

¹ A simplified proof for the resolution of singularities of an algebraic surface, Ann. of Math. vol. 43 (1942) p. 583.

² See loc. cit. footnote 1.

⁸ That proof was presented by us at a seminar in algebraic geometry at Johns Hopkins in 1942.

⁴ We use the term compact in the same sense as it is used by S. Lefschetz in his *Algebraic topology* (Amer. Math. Soc. Colloquium Publications, vol. 27, 1942). The old term is bicompact.

Hence this covering contains a finite subcovering $\{N(V_i-S_i)\}$, $i=1, 2, \cdots, m$, and this means that $\{V_1, V_2, \cdots, V_m\}$ is a finite resolving system of M.

The proof of compactness of M given in the next section is based in part on some simple algebro-geometric considerations, and in part on a theorem of Steenrod⁵ on the compactness of the limit space of an inverse system of compact T_1 -spaces.

2. The Riemann manifold as the limit space of an inverse system. Let $\mathfrak{B} = \{V_a\}$ be the collection of all projective models of Σ/k . By a point of V_a we mean a zero-dimensional prime ideal in a suitable coördinate ring of V_a , or, in other terms, a point is a prime one-dimensional homogeneous ideal in the ring of homogeneous coördinates of the general point of V_a . This defines V_a set-theoretically as a set of points. We topologize V_a by choosing as closed sets the algebraic subarieties of V_a . It is obvious that V_a then becomes a compact topological space in which points are closed sets (whence V_a is a T_1 -space; however, it is not a Hausdorff space).

If V_a and V_b are two projective models of Σ/k , we denote by π_a^b the transformation of V_b onto V_a defined by the birational correspondence between V_a and V_b . We define a partial ordering \prec of the collection \mathfrak{B} as follows: $V_a \prec V_b$ if whenever P_a and P_b are corresponding points of V_a and V_b under π_a^b then $Q(P_a) \subseteq Q(P_b)$. Here Q(P) denotes the quotient ring of P. It is clear that if $V_a < V_b$ then π_a^b is a single-valued continuous and closed mapping. Moreover, if V_a and V_b are arbitrary projective models of Σ/k , and if V_c denotes the join⁶ of V_a and V_b , then $V_a \prec V_c$ and $V_b \prec V_c$. Hence we have here an inverse system $\{V_a; \pi_a^b | V_a \prec V_b\}$ of compact T_1 -spaces. Let **M** be the limit space of the system. By Steenrod's theorem M is compact. Every point P^* of M represents an infinite collection of points $\{P_a\}$, $P_a \subseteq V_a$, $V_a \subseteq \mathfrak{B}$, with the property that if $V_a \prec V_b$ then $Q(P_a) \subseteq Q(P_b)$. We shall denote by π_a^* the mapping $P^* \rightarrow P_a$ of **M** into V_a . If V_a is any projective model of Σ/k and if W is any algebraic subvariety of V_a , then $(\pi_a^*)^{-1}W$ is a closed subset of M, and the closed sets obtained in this fashion form a basis for the closed subsets of M.

The compactness of the Riemann manifold of Σ/k and the implications stated in the preceding section are immediate consequences of the following theorem.

THEOREM. There is a (1, 1) correspondence between the points P^*

⁵ N. E. Steenrod, Universal homology groups, Amer. J. Math. vol. 58 (1936) p. 666.

⁶ See our paper Foundations of a general theory of birational correspondences, Trans. Amer. Math. Soc. vol. 53 (1943) p. 516.

of M and the zero-dimensional valuations v of the field Σ/k . If P^* and v are corresponding elements, and if V_a is any projective model of Σ/k , then $\pi_a^*P^*$ is the center of v on V_a .

PROOF. Let v be a zero-dimensional valuation of Σ/k and let $P_{a,v}$ be the center of v on any given projective model V_a of Σ/k . For any two projective models V_a , V_b it is then true that $P_{a,v}$ and $P_{b,v}$ are corresponding points in the birational correspondence π_a^b . Hence $P_v^* = \{P_{a,v}\}$ is a point of M. Thus every zero-dimensional valuation v determines uniquely a point P_v^* of M.

If v_1 and v_2 are two distinct zero-dimensional valuations, then there exists at least one projective model V_a such that $P_{a,v_1} \neq P_{a,v_2}$. Hence if $v_1 \neq v_2$ than $P_{v_1}^* \neq P_{v_2}^*$.

Now let P^* be an arbitrary point of M, $P^* = \{P_a\}$. We denote by \mathfrak{B} the least ring containing the quotient rings $Q(P_a)$. Let V_b be a fixed projective model of Σ/k and let $P_b = \pi_b^* P^*$. We assert that if ω is a non-unit in $Q(P_b)$ then $1/\omega \in \mathfrak{B}$. For assume that $1/\omega \in \mathfrak{B}$. Then $1/\omega$ will belong to the ring generated by a finite number of quotient rings $Q(P_a)$, say $Q(P_{a_1})$, $Q(P_{a_2})$, \cdots , $Q(P_{a_m})$. Let V_c be the join of the varieties V_b , V_{a_1} , V_{a_2} , \cdots , V_{a_m} and let $P_c = \pi_c^* P^*$. Since $\pi_{a_i}^* P^* = P_{a_i}$ and $\pi_b^* P^* = P_b$, we have $\pi_{a_i}^c P_c = P_{a_i}$ and $\pi_b^c P_c = P_b$, and hence $Q(P_{a_i}) \subseteq Q(P_c)$, $Q(P_b) \subseteq Q(P_c)$. Therefore $1/\omega \in Q(P_c)$. This is a contradiction since any non-unit of $Q(P_b)$ is obviously also a non-unit in $Q(P_c)$.

We have therefore shown that B is a proper ring (not a field). We now show that B is a valuation ring. For this it is sufficient to show that if ξ is any element of Σ then either $\xi \in \mathfrak{B}$ or $1/\xi \in \mathfrak{B}$. We consider again a fixed projective model V_b of Σ/k . We select a system of nonhomogeneous coördinates x_1, x_2, \dots, x_n of the general point of V_b in such a fashion that the point P_b (= $\pi_b^*P^*$) is at finite distance with respect to these coördinates. Let V_d be the projective model whose general point has as nonhomogeneous coördinates the elements $x_1, x_2, \dots, x_n, \xi$. If the point P_d $(=\pi_d^*P^*)$ is at finite distance with respect to these coördinates, then $\xi \in Q(P_d) \subseteq \mathfrak{B}$. If P_d is a point at infinity, we observe first of all that in the above proof of our assertion $1/\omega \in \mathfrak{B}$ we have shown incidentally the following: if V_a and V_b are any two projective models of Σ/k and if $\pi_a^*P^*=P_a$ and $\pi_b^*P^*=P_b$, then P_a and P_b are corresponding points of the birational correspondence between V_a and V_b . For on the join V_c of V_a and V_b we have the point $P_c = \pi_c^* P^*$ and the relations $Q(P_c) \supseteq Q(P_a)$, $Q(P_c) \supseteq Q(P_b)$. These relations show that if v is any zero-dimensional valuation whose center on V_c is the point P_c , then the center of von V_a is P_a and its center on V_b is P_b . Hence P_a and P_b are indeed corresponding points. With this observation in mind, let v be a zero-dimensional valuation whose center on V_b is the point P_b and whose center on V_d is the point P_d . Since P_b is at finite distance, we have $v(x_i) \ge 0$, $i = 1, 2, \dots, n$. Since P_d is at infinity, we must have $v(\xi) < 0$. Hence $v(1/\xi) > 0$, $v(x_i/\xi) > 0$, and this shows that if we take $1/\xi$, x_1/ξ , \dots , x_n/ξ as nonhomogeneous coördinates of the general point of V_d , then P_d is at finite distance. Hence $1/\xi \in Q(P_d) \subseteq \mathfrak{B}$. This completes the proof of our assertion that \mathfrak{B} is a valuation ring.

Let v be the valuation defined by the valuation ring \mathfrak{B} . We assert that v is zero-dimensional. For let v be of dimension s. We can find a projective model V_b on which the center of v is an s-dimensional variety W. If $P_b = \pi_b^* P^*$, then $Q(P_b) \subseteq \mathfrak{B}$ and this implies that $P_b \in W.^8$ If s > 0, then we can find a non-unit ω in $Q(P_b)$ such that $\omega \neq 0$ on W, whence $1/\omega \in Q(W) \subseteq \mathfrak{B}$, a contradiction. Hence s = 0, as asserted.

The above relation $P_b \in W$ implies now $P_b = W$. This is true for any projective model V_b , that is, the center of v on any projective model V_b is the point $P_b = \pi_b^* P^*$. This completes the proof of the theorem.

3. A generalization. Infinite direct products of projective lines. The idea of topologizing an algebraic variety V by choosing as closed sets the algebraic subvarieties of V can be used with good effect in order to topologize the set M^* of all homomorphic mappings of any abstract field A into another abstract field K. In this general case we are dealing essentially with a generalization of the concept of the Riemann manifold of a field of algebraic functions (see the Remark at the end of the paper). We begin with some topological preliminaries.

Let $\{R_a\}$ be a system of compact topological spaces indexed by a set $A = \{a\}$. We assume that each R_a is a T_1 -space; that is, that the points of R_a are closed sets. Elements of A shall be denoted by small Latin letters, a, b, c, \cdots ; subsets of A shall be denoted by small Greek letters, α , β , γ , \cdots . If α is a subset of A we shall denote by R_α the direct product $P_{a \in \alpha} R_a$. If $\alpha \subset \beta$ we denote by π_α^β the projection of R_β onto R_α . Finally, elements of R_α and R_α shall be denoted by x_α , y_α , z_α , \cdots respectively. If $a \in \alpha$ and if $\pi_\alpha^\alpha x_\alpha = x_a$, then x_α shall be referred to as the a-component of x_α .

We assume that for each finite subset α of A a topology has been assigned to R_{α} and that the following three conditions are satisfied: (1) R_{α} is a compact topological space; (2) if $\alpha \subset \beta$ then π_{α}^{β} is a closed

⁷ See our definition of corresponding points of a birational transformation, loc. cit. footnote 6, p. 505.

⁸ See loc. cit. footnote 6, Theorem 3, p. 497.

mapping (mapping = single-valued continuous transformation); (3) if α is a set with one element a then the topology assigned to R_{α} is exactly the topology of R_a . It is clear that in virtue of these two conditions R_{α} is a T_1 -space. For if x_a is the a-component of x_a , then $(\pi_a^{\alpha})^{-1}x_a$ is closed and x_{α} is the intersection of the closed sets $(\pi_a^{\alpha})^{-1}x_a$, $a \in \alpha$.

If we consider only finite subsets α of A and if we define a partial ordering in the collection $\{R_{\alpha}\}$ by setting $R_{\alpha} \prec R_{\beta}$ if $\alpha \subset \beta$, then we have an inverse system $\{R_{\alpha}; \pi_{\alpha}^{\beta}\}$. It is clear that set-theoretically the limit space R^* of the system coincides with the direct product $R^* = P_{\alpha \in A}R_{\alpha}$. However, the topology in R^* is not necessarily the usual topology of the product space, for our topology in R^* depends not only on the topology of each factor R_{α} but also on the topology which has been assigned to each R_{α} , for α any finite subset of A.

Our space R^* is compact, by Steenrod's theorem. We are dealing here with a special case of Steenrod's theorem, and the proof of the compactness of R^* can be somewhat simplified. For this reason, and also for the convenience of the reader, we shall include here a proof of the compactness of R^* .

We have to show that if a family of closed sets in R^* has the finite intersection property (that is, if every finite subfamily has a non-empty intersection), then the intersection of the entire family is non-empty. It will be sufficient to prove this for families of basic closed sets F_{α}^* , $F_{\alpha}^* = \pi_{\alpha}^{-1} F_{\alpha}$, where F_{α} denotes a closed set in R_{α} and where π_{α} is the projection of R^* onto R_{α} . Let then $\{F_{\alpha}^*\}$ be a family $\{G_{\alpha}^*\}$ of basic closed sets which has the finite intersection property. By Zorn's lemma the family $\{F_{\alpha}^*\}$ is contained in a maximal family $\{G_{\alpha}^*\}$ of basic closed sets which has the finite intersection property. It will be sufficient to show that $\bigcap G_{\alpha}^*$ is non-empty. We shall therefore assume that our original family $\{F_{\alpha}^*\}$ is not contained properly in another family of basic closed sets which has the finite intersection property.

We first observe that the intersection of any finite collection of basic closed sets is itself a basic closed set. For let $\{\pi_{\alpha_i}^{-1}F_{\alpha_i}\}$ be a finite collection of basic closed sets. We put $\alpha = \bigcup \alpha_i$, $F_{\alpha} = \bigcap (\pi_{\alpha_i}^{\alpha})^{-1}F_{\alpha_i}$. Then it is clear that $\bigcap \pi_{\alpha_i}^{-1}F_{\alpha_i} = \pi_{\alpha}^{-1}F_{\alpha}$.

In virtue of this remark and in virtue of the maximality property

⁹ The idea of passing to a maximal family is taken from the proof of Tychonoff's theorem as given in Lefschetz, *Algebraic topology*, p. 19. There is only this difference: the maximal family in Lefschetz is not a family of closed sets, while ours is. This modification of the proof succeeds because we restrict ourselves to families of basic closed sets and because in our case the mappings π^{β}_{α} are closed.

of the given family F, it follows that every finite intersection of sets in F is again in the family F.

For any element a in A and for any member F_{α}^* in \mathfrak{F} let $\pi_a F_{\alpha}^* = F_{\alpha,a}$. If $a \in \alpha$ then it is clear that $F_{\alpha,a} = R_a$, for then the a-component of the points of F_{α}^* is not restricted. If $a \in \alpha$ and if $F_{\alpha}^* = \pi_{\alpha}^{-1} F_{\alpha}$, then $F_{\alpha,a} = \pi_a^{\alpha} F_{\alpha}$. In either case $F_{\alpha,a}$ is a closed set in R_a , for we have assumed that π_{α}^{β} is closed whenever $\alpha \subset \beta$. For a given a the family \mathfrak{F}_a of closed sets $\{F_{\alpha,a}\}$ has the finite intersection property. Since R_a is compact, the intersection $\bigcap_{\alpha} F_{\alpha,a}$ is non-empty. Let x_a be a point common to all the sets in \mathfrak{F}_a . Then $\pi_a^{-1} x_a$ is a basic closed set (since R_a is a T_1 -space) which meets every set F_{α}^* in \mathfrak{F} . Consequently $\pi_a^{-1} x_a \in \mathfrak{F}_a$, and the intersection $\bigcap_{\alpha} F_{\alpha,a}$ consists only of the point x_a .

Let then $x = \{x_a\}$, where $x_a = \bigcap_{\alpha} F_{\alpha,a}$. We show that x is a common point of the sets F_{α}^* in \mathfrak{F} . Since $\pi_a^{-1}x_a \in \mathfrak{F}$, for any a, it follows that $\bigcap_{a \in \alpha} \pi_a^{-1}x_a \in \mathfrak{F}$, that is, $\pi_{\alpha}^{-1}x_{\alpha} \in \mathfrak{F}$, where $x_{\alpha} = \pi_{\alpha}x$. Therefore $\pi_{\alpha}^{-1}x_{\alpha}$ meets F_{α}^* , that is, $\pi_{\alpha}^{-1}F_{\alpha}$; hence $x_{\alpha} \in F_{\alpha}$ and $x \in \pi_{\alpha}^{-1}x_{\alpha} \subset \pi_{\alpha}^{-1}F_{\alpha} = F_{\alpha}^*$, q.e.d.

Now let K be a fixed abstract field and let the sets R_a be projective lines over K, so that the points of each set R_a are in (1, 1) correspondence with the elements of K together with the symbol ∞ . We topologize R_a by choosing as closed sets the finite subsets of R_a . Then each R_a becomes a compact topological T_1 -space.

We still have to topologize each set R_{α} , for α a finite subset of A. For this purpose we introduce on each line R_{α} a pair of homogeneous coördinates $x_{\alpha 1}$, $x_{\alpha 2}$ and we define an algebraic variety V_{α} by the following parametric equations (in which the $X_{(\bullet)}^{(\alpha)}$ denote the homogeneous coördinates of the general point of V_{α}):

$$\rho \cdot X_{\epsilon_1 \epsilon_2 \cdots \epsilon_n}^{(\alpha)} = x_{a_1 \epsilon_1} x_{a_2 \epsilon_2} \cdots x_{a_n \epsilon_n},$$

where $\alpha = \{a_1, a_2, \dots, a_r\}$ and where each ϵ_j can take the values 1 or 2. It is well known that V_{α} is a Segre variety, of dimension n, immersed in a projective space of dimension $2^n - 1$. The points of V_{α} are in (1, 1) correspondence with n-tuples of ratios $\{x_{\alpha 2}/x_{\alpha 1}\}$, $\alpha \in \alpha$, that is, with the points of the direct product $R_{\alpha} = R_{\alpha_1} \times R_{\alpha_2} \times \cdots \times R_{\alpha_n}$. It should be noted that here we only consider points X^{α} whose homogeneous coördinates are in K. We topologize V_{α} by choosing as closed sets the algebraic subvarieties of V_{α} . Then it is clear that each V_{α} becomes a compact topological T_1 -space.

If $\alpha = \{a_1, a_2, \dots, a_n\}$ and if β is a subset of α , say if $\beta = \{a_1, a_2, \dots, a_m\}$, m < n, then the projection π^{α}_{β} of V_{α} onto V_{β} is given by the equations:

$$X_{\epsilon_1\epsilon_2\ldots\epsilon_m}^{(\beta)}\colon\! X_{\delta_1\delta_2\ldots\delta_m}^{(\beta)}=X_{\epsilon_1\epsilon_2\ldots\epsilon_m\gamma_{m+1}\ldots\gamma_n}^{(\alpha)}\colon X_{\delta_1\delta_2\ldots\delta_m\gamma_{m+1}\ldots\gamma_n}^{(\alpha)},$$

where each ϵ , δ and γ can take *independently* the values 1 or 2. Thus π^{α}_{β} is a single-valued *rational* transformation of V_{α} onto V_{β} , and therefore π^{α}_{β} is closed and $(\pi^{\alpha}_{\beta})^{-1}$ is open. It is clear that the closed sets in the infinite direct product R^* , as defined above, are the sets defined by (finite or infinite) systems of homogeneous equations, each equation involving the variables $X^{(\alpha)}$ relative to some finite subset α of A.

4. The space of homomorphic mappings of one abstract field into another. We now further specialize our application by assuming that the set A is a field. The space R^* is then the space of all single-valued transformations $x^*: a \rightarrow x_a = x_{a1}/x_{a2}$, of the field A into the set consisting of the elements of the field K and of the symbol ∞ . We shall now express in an appropriate homogeneous form the conditions that a given mapping x^* be a homomorphism. Let α be a subset of A consisting of three elements, $\alpha = \{a_1, a_2, a_3\}$. On the corresponding variety V_{α} let $F_{\alpha_1,\alpha_2,\alpha_3}$ be the algebraic subvariety obtained by imposing on the 6 parameters x_{i1} , x_{i2} , $i=a_1$, a_2 , a_3 , the following condition:

$$(2) x_{a_11}x_{a_22}x_{a_32} + x_{a_12}x_{a_21}x_{a_32} = x_{a_12}x_{a_22}x_{a_31}.$$

Similarly we define another algebraic subvariety G_{a_1,a_2,a_3} of V_{α} by the equation

$$x_{a_11}x_{a_21}x_{a_32} = x_{a_12}x_{a_22}x_{a_31}.$$

Let $x_{a,1}/x_{a,2}=x_j$, j=1, 2, 3, where x_j may be ∞ . Suppose that equation (2) holds true. Then if x_1 and x_2 are both different from ∞ we find $x_3 = x_1 + x_2$. If $x_1 = \infty$ and $x_2 \neq \infty$, then $x_{a_1 2} = 0$, $x_{a_1 1} \cdot x_{a_2 2} \neq 0$, whence (2) yields $x_{a_32} = 0$, that is, $x_3 = \infty$. Assume now that equation (3) holds. Again we find that $x_3 = x_1x_2$, if both x_1 and x_2 are different from ∞ . If $x_1 = \infty$ and $x_2 \neq 0$, then $x_{a_1} = 0$, $x_{a_1} \cdot x_{a_2} \neq 0$, and (3) yields $x_{a_2} = 0$, that is, $x_3 = \infty$. Thus the equations (2) and (3) are the homogeneous counterparts of the equations $x_3 = x_1 + x_2$ and $x_3 = x_1 x_2$ respectively, and they include the conventions which are usually made for the symbol ∞ . We can therefore assert that x^* represents a homomorphic mapping of A into (K, ∞) if and only if the following conditions are satisfied: for any three elements a_1 , a_2 , a_3 of A such that respectively $a_3 = a_1 + a_2$ or $a_3 = a_1 a_2$, the projection $\pi_a^{-1} x^*$ (where $\alpha = \{a_1, a_2, a_3\}$) must lie respectively on F_{a_1,a_2,a_3} or on G_{a_1,a_2,a_3} . Therefore, if we denote by M the set of all homomorphic mappings of A into (K, ∞) , we see that

$$M = \bigcap_{\alpha} \pi_{\alpha}^{-1} F_{a_1 a_2 a_3} \bigcap_{\beta} \pi_{\beta}^{-1} G_{b_1 b_2 b_3},$$

where the index α ranges over all sets $\alpha = \{a_1, a_2, a_3\}$ such that $a_3 = a_1 + a_2$, and the index β ranges over the sets $\beta = \{b_1, b_2, b_3\}$ such that $b_3 = b_1b_2$. We see thus that M is an intersection of basic closed subsets of R^* . Hence M is closed, and since R^* is compact M is also compact.

The case which is of special interest to us is that in which K is a subfield of A. In this case we are interested in the relative homomorphisms of A into (K, ∞) , that is, in the homomorphisms x^* which leave each element of K invariant. If M^* is the set of all these relative homomorphisms, then it is clear that M^* is the intersection of M with the closed set $\bigcap_{a \in K} \pi_a^{-1}a$. Here, according to our notations, $\pi_a^{-1}a$ denotes that subset of R^* which consists of the points x^* whose a-component x_a is a itself $(a \in K)$. Hence also M^* is a compact space.

It is convenient to describe in algebro-geometric terms the relative topology induced in M^* by the topology of M. Let x_1, x_2, \dots, x_n be a finite set of elements of A. For each x_i we introduce a pair of homogeneous parameters x_{i1} , x_{i2} such that $x_{i1}/x_{i2}=x_i$. We consider the algebraic variety Z over K whose general point has as homogeneous coördinates the quantities $X_{(i)}$ defined by the parametric equations

$$\rho X_{\epsilon_1 \epsilon_2 \cdots \epsilon_n} = x_{1 \epsilon_1} x_{2 \epsilon_2} \cdots x_{n \epsilon_n},$$

where each ϵ_i can take the values 1 or 2. If the quantities x_i are algebraically independent, then the variety Z coincides with the variety V_{α} defined by the equations (1), α being the subset $\{x_1, x_2, \dots, x_n\}$ of A. But in general Z is a subvariety of V_{α} . If $x^* \in M^*$, then the mapping x^* of A into (K, ∞) must preserve all the algebraic relations between x_1, x_2, \dots, x_n over K, since x^* is a homomorphism. It follows that the point $\pi_{\alpha}x^*$ of V_{α} must lie on Z. Now we observe that the homomorphism x^* defines a unique valuation of A/K whose residue field is K itself and whose center on Z is the point $\pi_{\alpha}x^*$. Conversely, every valuation of A/K whose residue field is K defines a relative homomorphic mapping of A/K onto (K, ∞) . We conclude that if W is any algebraic subvariety of Z, then the set of all valuations of A/K having K as residue field and having center on W is a closed subset of M^* . By taking different finite subsets $\{x_1, x_2, \dots, x_n\}$ of A and different subvarieties W of Z we obtain a family of closed subsets of M^* which form a basis for the closed subsets of M^* .

REMARK. Suppose that A is a field of algebraic functions in any number of variables, over a given ground field k. We identify the field K with the algebraically closed field determined by k. The Riemann manifold M of A is the set of all zero-dimensional valuations v

of A. By the ground field extension $k \rightarrow K$ we can embed A in a field A' = KA. Every relative homomorphic mapping of A' onto (K, ∞) determines uniquely a zero-dimensional valuation of A'/K, and vice versa. Every zero-dimensional valuation of A/K induces a unique zero-dimensional valuation of A/K, but a given zero-dimensional valuation of A/K may be extendable in more than one way to a zero-dimensional valuation of A'/K. It follows that the Riemann manifold M' of A'/K coincides with the space M^* of all relative homomorphic mappings of A' onto (K, ∞) and is therefore a compact space. The Riemann manifold M of A/K is obtainable from M' by topological identification and therefore can also be converted into a compact topological space. That is precisely what we have proved in §2.

THE JOHNS HOPKINS UNIVERSITY