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1. The existence of finite resolving systems. In an earlier paper1 

we have announced the result that the existence of a resolving system 
of the Riemann manifold of an abstract field of algebraic functions 
(in any number of variables) or—what is the same—the local uni-
formization theorem2 implies the existence of finite resolving systems 
of the Riemann manifold. We have proved this result for algebraic 
surfaces by arithmetic considerations.1 The proof for the general case 
of varieties, which at that time was in our possession,8 and which we 
have promised to publish in a subsequent paper, was of similar na­
ture, that is, it was based upon considerations involving the structure 
of certain infinite sequences of quotient rings. However, we have suc­
ceeded lately in finding a much simpler proof which is based on topo­
logical considerations. 

Let S be a field of algebraic functions of several variables, over an 
arbitrary ground field k. By the Riemann manifold M of S we mean 
the totality of places of 2 , that is, the totality of zero-dimensional 
valuations v of 2J/&. If F is a projective model of 2 /£ , and if H is 
any subset of V, we denote by N(H) the subset of M consisting of 
those valuations t> which have center in H. By a resolving system 
of M we mean a collection 33 = { Va} of projective models (finite or 
infinite in number) with the property that for any vin M there exists 
a Va in S3 such that the center of v on Va is a simple point. 

The topology which we introduce in M is simply this: we choose as 
a basis for the closed sets of M the sets N(W), where W is any algebraic 
subvariety of any projective model of 2 . We prove that if topologized 
in this fashion, the set Mis a compact* topological space. From this the 
result announced above follows immediately. For if { Va} is a re­
solving system, and if we denote by Sa the singular locus of Va, then 
N( Va — So) is an open set and {N( Va — Sa)} is an open covering of M. 

Received by the editors April 10, 1944. 
1 A simplified proof for the resolution of singularities of an algebraic surface^ Ann. of 

Math. vol. 43 (1942) p. 583. 
2 See loc. cit. footnote 1. 
8 That proof was presented by us at a seminar in algebraic geometry at Johns 

Hopkins in 1942. 
4 We use the term compact in the same sense as it is used by S. Lefschetz in his 

Algebraic topology (Amer. Math. Soc. Colloquium Publications, vol. 27, 1942). The 
old term is bicompact. 
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Hence this covering contains a finite subcovering {N(Vi~-Si)}, 
i = l, 2, • • • , m, and this means that { V\, Vi, • • • , Vm} is a finite 
resolving system of M. 

The proof of compactness of M given in the next section is based 
in part on some simple algebro-geometric considerations, and in part 
on a theorem of Steenrod6 on the compactness of the limit space of 
an inverse system of compact Ti-spaces. 

2. The Riemann manifold as the limit space of an inverse system. 
Let 33 = { Va} be the collection of all projective models of 2/&. By 
a point of Va we mean a zero-dimensional prime ideal in a suitable 
coordinate ring of Va, or, in other terms, a point is a prime one-
dimensional homogeneous ideal in the ring of homogeneous coordinates 
of the general point of Va* This defines Va set-theoretically as a set 
of points. We topologize Va by choosing as closed sets the algebraic 
subarieties of Va. I t is obvious that Va then becomes a compact topo­
logical space in which points are closed sets (whence Va is a TVspace ; 
however, it is not a Hausdorff space). 

If Va and Vb are two projective models of 2/&, we denote by 7rJ 
the transformation of Vb onto Va defined by the birational corre­
spondence between Va and Vb* We define a partial ordering < of 
the collection S3 as follows : Va < Vb if whenever Pa and Pb are corre­
sponding points of Va and Vb under irl then Q(Pa)QQ(Pb). Here 
Q(P) denotes the quotient ring of P . I t is clear that if Va < Vb then 
7Ta is a single-valued continuous and closed mapping. Moreover, if Va 

and Vb are arbitrary projective models of 2/&, and if Vc denotes the 
join6 of Va and Vb, then Va < Vc and Vb < Ve. Hence we have here an 
inverse system { Va\ ^l\ Va< Vb) of compact 7Vspaces. Let M be 
the limit space of the system. By Steenrod's theorem M is compact. 
Every point P* of M represents an infinite collection of points {Pa}, 
PaG Va, FaGS5, with the property that if Va)< Vb then Q(Pa) QQ(Pb). 
We shall denote by 7r«* the mapping P*—>Pa of M into Va. If Va is 
any projective model of 2 / è and if W is any algebraic subvariety of 
Va, then (7r0*)-Wis a closed subset of M, and the closed sets obtained 
in this fashion form a basis for the closed subsets of M. 

The compactness of the Riemann manifold of 2 / £ and the implica­
tions stated in the preceding section are immediate consequences of 
the following theorem. 

THEOREM. There is a (1, 1) correspondence between the points P * 

5 N. E. Steenrod, Universal homology groups, Amer. J. Math. vol. 58 (1936) p. 666, 
8 See our paper Foundations of a general theory of birational correspondences, Trans. 

Amer. Math. Soc> vol. 53 (1943) p. 516. 



i944] THE COMPACTNESS OF THE RIEMANN MANIFOLD 685 

of M and the zero-dimensional valuations v of the field 2/&. If P* and v 
are corresponding elements, and if Va is any projective model of 2/k, 
then 7T0*P* is the center of v on Va. 

PROOF. Let v be a zero-dimensional valuation of X/k and let Pa,v 
be the center of v on any given projective model Va of 2/&. For any 
two projective models Vm Vb it is then true that Pa,v and P&,„ are 
corresponding points in the birational correspondence 7r£. Hence 
Pv* = {Pa,v} is a point of M. Thus every zero-dimensional valuation 
v determines uniquely a point P* of M. 

If v\ and V2 are two distinct zero-dimensional valuations, then there 
exists at least one projective model Va such that Pa^^Pa.v^ Hence 
ifvi9*v*thanP*9*P*. 

Now let P* be an arbitrary point of M, P* = {Pa} . We denote by 
33 the least ring containing the quotient rings Q(Pa)* Let Vb be a fixed 
projective model of 2/k and let P&=7r6*P*. We assert that if co is a 
non-unit in Q(Pb) then l/co(£33. For assume that l/co£33* Then I/o? 
will belong to the ring generated by a finite number of quotient rings 
Q(Pa), say Q(Pai), (?(P«2), • • • , <?(PoJ. Let Vc be the join of the 
varieties Vb, Vai, Va%, • • • , Vam and let Pc=7rc*P*. Since 7ra*P*=P0< 
and irb*P*=:Pb, we have we

aiPc = Pai and irlPc — Pb, and hence 
Q(Pai)ÇQ(Pc), Q(Pb)QQ(Pc). Therefore l /«eQ(P„) . This is a con­
tradiction since any non-unit of (?(P&) is obviously also a non-unit in 
Q(Pc). 

We have therefore shown that S3 is a proper ring (not a field). 
We now show that S3 is a valuation ring. For this it is sufficient to 
show that if £ is any element of S then either ££33 or l /££33 . We 
consider again a fixed projective model Vb of 2 /£ . We select a sys­
tem of nonhomogeneous coordinates xh x^ • • • , xn of the general 
point of Vb in such a fashion that the point P& (=7r&*P*) is at finite 
distance with respect to these coordinates. Let Vd be the projective 
model whose general point has as nonhomogeneous coordinates the 
elements xi, x2, • • • , xn, £. If the point Pa ( « T T / P * ) is at finite dis­
tance with respect to these coordinates, then ££(?(Pd)£33. If Pd is 
a point at infinity, we observe first of all that in the above proof of 
our assertion l/co(£33 we have shown incidentally the following: if 
Va and Vb are any two projective models of H/k and if 7ra*P*=:Pa 
and Wb*P*s=Pb, then Pa and P& are corresponding points of the bira­
tional correspondence between Va and F&. For on the join Vc of Va 

and Vb we have the point Pc=7rc*P* and the relations Q{P^)^Q{Pa)t 

0(PC)2Ç(P6). These relations show that if v is any zero-dimensional 
valuation whose center on Vc is the point Pc, then the center of v 
on Va is Pa and its center on Vb is P&. Hence P 0 and Pb are indeed 
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corresponding points.7 With this observation in mind, let v be a zero-
dimensional valuation whose center on Vb is the point Pb and whose 
center on Vd is the point Pd. Since Pb is a t finite distance, we have 
v(xi)*zOf i = l, 2, • • • , n. Since Pd is a t infinity, we must have 
v(£) < 0 . Hence v(l/£) > 0 , v(xi/£) > 0 , and this shows that if we take 
V£> #i/£> • • • , Xn/% as nonhomogeneous coordinates of the general 
point of Vd, then Pd is a t finite distance. Hence l/^GQ(Pd) Q$8* This 
completes the proof of our assertion that 33 is a valuation ring. 

Let v be the valuation defined by the valuation ring 33. We assert 
tha t v is zero-dimensional. For let v be of dimension 5. We can find a 
projective model Vb on which the center of v is an ^-dimensional vari­
ety W. If P6=7r**P*, then Q(P»)S© and this implies that P*GW.8 

If s > 0 , then we can find a non-unit co in Q(Pb) such that co5^0 on W, 
whence 1/UÇZQ(W)Q$5, a contradiction. Hence s = 0, as asserted. 

The above relation PbÇzW implies now Pb~W. This is true for 
any projective model F&, that is, the center of v on any projective 
model Vb is the point P&=7T6*P*. This completes the proof of the 
theorem. 

3. A generalization. Infinite direct products of projective lines. The 
idea of topologizing an algebraic variety V by choosing as closed sets 
the algebraic subvarieties of F can be used with good effect in order to 
topologize the set M* of all homomorphic mappings of any abstract 
field A into another abstract field K. In this general case we are deal­
ing essentially with a generalization of the concept of the Riemann 
manifold of a field of algebraic functions (see the Remark at the end 
of the paper). We begin with some topological preliminaries. 

Let {Ra\ be a system of compact topological spaces indexed by a 
set A = {a}. We assume that each Ra is a TV-space; that is, tha t the 
points of Ra are closed sets. Elements of A shall be denoted by small 
Latin letters, a, b, c, • • • ; subsets of A shall be denoted by small 
Greek letters, a, /3, 7, • • • . If a is a subset of A we shall denote by 
Ra the direct product Pa^a P<*. If «CjS we denote by 7r£ the projec­
tion of Rfi onto i?«. Finally, elements of Ra and Ra shall be denoted 
by xa, y a, Za, • • • and by xa, ya, z*} • • • respectively. If a £ a and if 
irZxa =xa, then xa shall be referred to as the a-component of xa. 

We assume tha t for each finite subset a of A a topology has been 
assigned to Ra and that the following three conditions are satisfied : 
(1) Ra is a compact topological space; (2) if aC.fi then iri is a closed 

7 See our definition of corresponding points of a birational transformation, loc. cit. 
footnote 6, p. 505. 

8 See loc. cit. footnote 6, Theorem 3, p. 497. 

aC.fi
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mapping (mapping = single-valued continuous transformation); (3) if 
a is a set with one element a then the topology assigned to Ra is exactly 
the topology of Ra. It is clear that in virtue of these two conditions 
Ra is a Ti-space. For if xa is the a-component of #«, then (TT»)"1^ is 
closed and xa is the intersection of the closed sets {T^)"lxai a £ a . 

If we consider only finite subsets a of A and if we define a partial 
ordering in the collection {Ra} by setting Ra<Rp if c*C/3, then we 
have an inverse system {i?a; TT£} . It is clear that set-theoretically the 
limit space i?* of the system coincides with the direct product 
R* = PaçiARa. However, the topology in R* is not necessarily the usual 
topology of the product space, for our topology in i?* depends not 
only on the topology of each factor Ra but also on the topology which 
has been assigned to each i?a, for a any finite subset of A. 

Our space 2?* is compact, by Steenrode theorem. We are dealing 
here with a special case of Steenrod's theorem, and the proof of the 
compactness of R* can be somewhat simplified. For this reason, and 
also for the convenience of the reader, we shall include here a proof 
of the compactness of R*. 

We have to show that if a family of closed sets in R* has the finite 
intersection property (that is, if every finite subfamily has a non­
empty intersection), then the intersection of the entire family is 
non-empty. It will be sufficient to prove this for families of basic 
closed sets Fa*, Fa*=ira~

1Fa, where Fa denotes a closed set in Ra and 
where Ta is the projection of i?* onto Ra. Let then {Fa*} be a family 
S of basic closed sets which has the finite intersection property. By 
Zorn's lemma the family {Fa*} is contained in a maximal family 
{Ga*} of basic closed sets which has the finite intersection property. 
It will be sufficient to show that flGa* is non-empty. We shall there­
fore assume that our original family {Fa*} is not contained properly 
in another family of basic closed sets which has the finite intersection 
property.9 

We first observe that the intersection of any finite collection of basic 
closed sets is itself a basic closed set. For let {waT1Fai} be a finite col­
lection of basic closed sets. We put a = Uo:,-, Fa — ̂ ^^Fai* Then it 
is clear that ()/n'a71Fai:=ira~1Fa* 

In virtue of this remark and in virtue of the maximality property 

9 The idea of passing to a maximal family is taken from the proof of Tychonoff's 
theorem as given in Lefschetz, Algebraic topology, p. 19. There is only this difference: 
the maximal family in Lefschetz is riot a family of closed sets, while ours is. This 
modification of the proof succeeds because we restrict ourselves to families of basic 
closed sets and because in our case the mappings 7r̂  are closed. 
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of the given family gf, it follows that every finite intersection of sets 
in ft is again in the family ft. 

For any element a in A and for any member Fa* in ft let TaFa* = Fa,a. 
If aÇÇia then it is clear that Fa.a — Ra, for then the a-component of 
the points of F«* is not restricted. If Ö E « and if Ff—w^Fa, then 
Fa.a^irZFa* In either case Fa,a is a closed set in Ra, for we have as­
sumed that T£ is closed whenever a(Z(3. For a given a the family fta 

of closed sets {Fa,a} has the finite intersection property. Since Ra is 
compact, the intersection ftaFa,a is non-empty. Let xa be a point com­
mon to all the sets in fta. Then irâlxa is a basic closed set (since Ra 

is a 7\-space) which meets every set Fa* in ft. Consequently ir^lxa G ft, 
#a£&a, and the intersection naF«,a consists only of the point xa. 

Let then x = {x a}, where #a = Ha jPa,a. We show that x is a common 
point of the sets F* in ft. Since T T ^ ^ G S » f ° r a n Y »̂ it follows that 
ftaciaira^aCiiS, tha t is, Tra""1;*̂  G §, where xa*=irax. Therefore w^Xa 
meets F*t that is, TT^T1^; hence xaÇ.Fa and #G^<r1#aC^<T1^« = .Fa*, 
q.e.d. 

Now let K be a fixed abstract field and let the sets Ra be projective 
lines over K, so that the points of each set Ra are in (1, 1) correspond­
ence with the elements of K together with the symbol oo. We topolo­
gize Ra by choosing as closed sets the finite subsets of Ra. Then each 
Ra becomes a compact topological TVspace. 

We still have to topologize each set Rai for a a finite subset of A. 
For this purpose we introduce on each line Ra a pair of homogeneous 
coordinates xai, Xa2 and we define an algebraic variety Va by the fol­
lowing parametric equations (in which the X$f denote the homogene­
ous coordinates of the general point of Va) : 

where a = {au a%y • • • , av\ and where each €y can take the values 1 
or 2. I t is well known that Va is a Segre variety, of dimension n> 
immersed in a projective space of dimension 2n — 1 . The points of Va 

are in (1, 1) correspondence with w-tuples of ratios {xa2/xai}, a Ç a , 
that is, with the points of the direct product Ra~RaiXRa2X • • • 
XRan* I t should be noted that here we only consider points X" whose 
homogeneous coordinates are in K. We topologize Va by choosing as 
closed sets the algebraic subvarieties of Va. Then it is clear that each Va 

becomes a compact topological 7Vspace. 
If a = { a i , #2, • • • , an} and if /3 is a subset of a, say if 

j8= {aif 02, • • • , am}i m <nt then the projection 7rjg| of Va onto V$ is 
given by the equations: 

Y(f» (fi) _ («) . («) 
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where each e, 8 and y can take independently the values 1 or 2. 
Thus 7T0 is a single-valued rational transformation of Va onto Vp, 
and therefore ic% is closed and (TT^)""1 is open. I t is clear that the closed 
sets in the infinite direct product i?*, as defined above, are the sets 
defined by (finite or infinite) systems of homogeneous equations, each 
equation involving the variables X^a) relative to some finite subset 
a of A. 

4. The space of homomorphic mappings of one abstract field into 
another. We now further specialize our application by assuming that 
the set A is a field. The space R* is then the space of all single-valued 
transformations x* : a—>xa = xa\lxai, of the field A into the set consisting 
of the elements of the field K and of the symbol oo. We shall now ex­
press in an appropriate homogeneous form the conditions that a given 
mapping x* be a homomorphism. Let a be a subset of A consisting of 
three elements, a= {au a2, #3}. On the corresponding variety Va let 
Falta2tai be the algebraic sub variety obtained by imposing on the 6 
parameters Xa, x&, i = ai, a2, #3, the following condition: 

(2) %ail%d22Xaz2 ~T~ %ai2%a,2l%a$2 — Xai2%a,22%a%U 

Similarly we define another algebraic subvariety Gai,a2,ai of Va by the 
equation 

(3) XailXa 2 l#a32 — Xai%%a$Xa$l* 

Let Xaji/xafi^Xjjj = 1,2,3, where xj may be 00. Suppose that equation 
(2) holds true. Then if xx and x* are both different from 00 we find 
#3 = ffi+#2. If xi= 00 and X2?* <*>, then ^ 2 = 0, tf^i-a^^O, whence (2) 
yields xaz2 = 0, that is, Xz = 00. Assume now that equation (3) holds. 
Again we find that if both xi and #2 are different from 00. 
If xi= 00 and #2 7^0, then #ai2 = 0, ff^rtf^i^O, and (3) yields xai2 = 0, 
that is, xz = 00. Thus the equations (2) and (3) are the homogeneous 
counterparts of the equations #3= :#i+#2 and Xz^XiX* respectively, 
and they include the conventions which are usually made for the 
symbol 00. We can therefore assert tha t x* represents a homomor­
phic mapping of A into (K, 00 ) if and only if the following conditions 
are satisfied: for any three elements au #2, #3 of A such that re­
spectively az — a\+a% or az—a\a^ the projection TT£"1X* (where 
a={au a2t a3}) must lie respectively on F^^^ or on Gai,a2,az* 
Therefore, if we denote by M the set of all homomorphic mappings 
of A into (K, 00), we see that 

M = H ^ a ^010203 fl np Gbtb2bv 



690 OSCAR ZARISKI [October 

where the index a ranges over all sets a = {au a2t a%\ such that 
a3=ai+#2, and the index /3 ranges over the sets /3= {bi, b2, b*} such 
that bz = 6i62. We see thus that M is an intersection of basic closed 
subsets of i?*. Hence M is closed, and since i?* is compact M is also 
compact. 

The case which is of special interest to us is that in which K is a 
subfield of A. In this case we are interested in the relative homo-
morphisms of A into (K, 00), that is, in the homomorphisms x* which 
leave each element of K invariant. If M* is the set of all these relative 
homomorphisms, then it is clear that M* is the intersection of M with 
the closed set OaczKff^a. Here, according to our notations, Tj"la de­
notes that subset of R* which consists of the points x* whose a-com-
ponent xa is a itself (a GUT). Hence also M* is a compact space. 

I t is convenient to describe in algebro-geometric terms the relative 
topology induced in M* by the topology of M. Let 
be a finite set of elements of A. For each Xi we introduce a pair of 
homogeneous parameters Xn, x& such that xa/x&~Xi. We consider 
the algebraic variety Z over K whose general point has as homogene­
ous coordinates the quantities X(€) defined by the parametric equa­
tions 

where each ej can take the values 1 or 2. If the quantities Xi are alge­
braically independent, then the variety Z coincides with the variety 
Va defined by the equations (1), a being the subset {#1, x2, • • • , xn} 
of A. But in general Z is a subvariety of F«. If #*£M*, then the 
mapping x* of A into (K, 00 ) must preserve all the algebraic relations 
between a?i, x2, • • • , xn over K, since x* ip a homomorphism. I t 
follows that the point 7ra#* of Va must lie on Z. Now we observe that 
the homomorphism x* defines a unique valuation of A/K whose 
residue field is K itself and whose center on Z is the point wax*. Con­
versely, every valuation of A/K whose residue field is K defines a 
relative homomorphic mapping of A/K onto (K, 00)# We conclude 
that if W is any algebraic subvariety of Z, then the set of all valuations 
of A/K having K as residue field and having center on Wis a closed sub-
set of M*. By taking different finite subsets {#1, x2, • • • , xn} of A 
and different subvarieties W of Z we obtain a family of closed subsets 
of M* which form a basis for the closed subsets of M*. 

REMARK. Suppose that A is a field of algebraic functions in any 
number of variables, over a given ground field k. We identify the 
field K with the algebraically closed field determined by k. The Rie-
mann manifold M of A is the set of all zero-dimensional valuations v 
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of A. By the ground field extension k-*K we can embed A in a field 
A' = KA. Every relative homomorphic mapping of A' onto (K, <») 
determines uniquely a zero-dimensional valuation of A '/K, and vice 
versa. Every zero-dimensional valuation of A r/K induces a unique 
zero-dimensional valuation of A/K, but a given zero-dimensional 
valuation oî A/K may be extendable in more than one way to a zero-
dimensional valuation of A'/K. It follows that the Riemann manifold 
M' of A '/K coincides with the space M* of all relative homomorphic 
mappings of A ' onto (K, <*> ) and is therefore a compact space. The 
Riemann manifold M of A/K is obtainable from M' by topological 
identification and therefore can also be converted into a compact 
topological space. That is precisely what we have proved in §2. 

T H E JOHNS HOPKINS UNIVERSITY 


