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Introduction. A very prominent feature of the development of the 
theory of function spaces, a branch of mathematics which deservedly 
or not has attracted very concentrated attention since the turn of the 
century, is that one of the essential and defining features of a func­
tion was rapidly eliminated from attention. The property to which 
we refer is the ring property, more properly the multiplicative prop­
erty, which demands that the multiplication of any two elements be 
allowed. Thus when the study of these spaces was sufficiently de­
veloped to be cast into abstract form, the basic domain of operations 
was not a ring but merely a group, an additive group or module, with 
real or complex operators. When a suitable topology is introduced 
into such a group it becomes a space. The spaces 58 defined by Banach 
seem to merit the most attention. The topology introduced is of the 
simplest character: a metric, invariant under translation, and homo­
geneous with respect to scalar (that is, real or complex numerical) 
multiplication. The elements of these metric groups are called vectors. 

It is only very recently that its birthright has been restored to this 
theory and that function spaces are being studied as rings and not 
merely as groups. The present address will attempt to delineate some 
aspects of the recent developments, to point to certain achievements, 
and to suggest some problems. The compilation of problems, the 
formulation of open questions, is usually a hazardous matter. It is 
frequently difficult to understand the importance of a question be­
fore it has been answered. Thus our suggestions will be largely tenta­
tive. 

Definition and examples of normed rings. To begin with, a Banach 
space is an additive group of elements a, b, c, ƒ, g, • • • with operators 
a, j8, X, /z, • • • which are complex numbers (in the present work real 
scalars will be excluded). Every element a has a norm | a | (also writ­
ten ||a|| or even |||a|||!) which is a non-negative number. The space 
is metrized by the norm with dist (a, b) = |& —a\ ; it is complete in 
this norm. Finally the norm is homogeneous, that is, | aa | » | a\ • | a\. 
We are now in a position to define a normed abelian ring. 

An address delivered before the New York meeting of the Society on April 29, 
1944, by invitation of the Program Committee; received by the editors May 2, 
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DEFINITION. A collection 9Î of elements is called a normed abelian 
ring if 

(i) 9Î is a Banach space. 
(ii) 9Î is a ring with unit1 e. Multiplication satisfies the axiom ab = ba 

{abelian character). 
(iii) Under multiplication, the norm is subject to the inequality 

(1) | 0 . f t | â | a | - | f t | . 

These axioms were first given by Nagumo in 1936.2 To indicate the 
versatility of the concept here defined some examples will be cited. 
At the head of the list will be placed certain classic rings of analysis. 

1. The ring of complex numbers, 
2. The ring of complex valued functions ƒ (#) bounded and continu­

ous on a metric space 5 with [/| =l.u.b.s|f(x)| (for example, S might 
be the interval O^gtf^l). 

3. The ring of functions ƒ (s) analytic over some bounded domain D 
and continuous over the closure 25 of D with | / | =l.u.b.^|/(s)|. 

4. The ring of complex valued functions ƒ(x) of bounded variation 
on an interval a^x^b with | / | =l.u.b.[a,6]|/(^)| + V[a,b]f(x). 

5. The ring of absolutely convergent Fourier series f(x) =2^- *>aneinx 

with|/ |«E=.W. 
6. The ring of operators <f>{A) defined by means of functions 0(X) 

which are measurable and bounded with respect to a resolution of the 
identity JE(X), — <*> <X< <x>, in a reflexive vector space. 

7. The ring generated by any bounded linear operator T defined 
over an arbitrary Banach space $8 (or ring 9t) with | T\ = l.u.b.| Tf\, 
| / | «If f&ô. The ring then consists of the polynomials in T with 
their limits in the indicated topology (uniform topology). 

8. The ring generated by any one-parameter group or semi-group 
of linear transformations in a Banach space. 

9. The ring of complex valued functions ƒ(x), a^x^b, possessing 
m continuous derivatives with | / | ^Sn-oW)^ 1 l.u.b.[at6]|/(n)(#)| • 

10. The ring 9Î of complex valued functions ƒ (#), a^xSb, possess­
ing infinitely many derivatives in which the norm is introduced as 
follows: Let Jkfn>0, w = 0, 1, 2, • • • , be a sequence of constants with 
Mn/(Mr-M^)%nl/[rl(n-r)\], r = 0, 1, • • • , n. Then f(x)eW if 
SiT-o^»)""1 l.u.b.[a,&)|/(n)(*)| < °°. This series serves as the norm of 
fix). 

1 There is little point in investigating rings without unit. But if R has no unit, it 
can be embedded in a normed ring Ri with unit and such that R is a maximal ideal 
in£i. 

2 M. Nagumo, Einige analytische Untersuchungen in linear en metrischen Ringen, 
Jap. J. Math. vol. 13 (1936) pp. 61-80. 
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At this point a few bibliographical remarks seem pertinent* Ex­
ample 1 is the core of every ring. It will be seen shortly how the com­
plex numbers can be distinguished from other rings. Rings in 6 were 
first considered by v. Neumann and Stone for Hubert space.8 The 
author subsequently showed that all the essential phenomena could 
be reproduced in a Banach space providing it was reflexive.4 Since 
then this particular problem has been considered by F. Riesz who 
founds his discussion not on normed rings but partially ordered 
spaces.6 Example 7 is particularly important in the present discus­
sion. It will be seen later in our treatment of maximal ideals that a 
ring 7 is locally homomorphic to rings of type 2 or 3 or 9 or 10. The ring 
7 where Tis a bounded self-adjoint transformation in Hilbert space has 
a structure which permits with ease the finding of the resolution of 
the identity of T (which, incidentally, is not usually in 9t). This will 
be shown below. Although the determination of the structure of trans­
formations by operating with their rings (rather than with the clum­
sier spaces over which they are defined) has had very signal successes, 
there are some points at which this approach has not yet yielded 
ground. An ideal-theoretic procedure for determining in 8 the resolu­
tion of the identity of a one-parameter strongly continuous group Ut 

of unitary transformations on Hilbert space has failed up to this 
moment.6 A fortiori, for the case of rings 8 generated by semi-groups 
in Banach spaces attempts by the author to extend the results of 
Hille7 have not been successful. The rings 10 are similar to those 
treated in the literature.8 Incidentally, as an example of constants 
Mn satisfying the given conditions one may take ikfn =» (ft !)*, s*zl. 
If s = 1 the ring contains exclusively analytic functions. The results 
of Gelfand relating to ring 5 are well known to analysts. However 
the parent theory of which these results on absolutely convergent 

8 J. v. Neumann, Über Funktionen von Funktionaloperatoren, Ann. of Math. (2) 
vol. 32 (1931) pp. 191-226; M. H. Stone, Linear transformations in Hilbert space, 
Amer. Math. Soc. Colloquium Publications, vol. 15,1932, chap. 6. 

4 E. R. Lorch, On a calculus of operators in reflexive vector spaces. Trans. Amer. 
Math. Soc. vol. 45 (1939) pp. 217-234. 

6 F. Riesz. Sur quelques notions fondamentales dans la théorie générale des opérations 
linéaires, Ann. of Math. (2) vol. 41 (1940) pp. 174-206. 

• This is a theorem due to Stone to the effect that J7«*=exp (isH), H self -ad joint. 
The fact that H may be unbounded causes the difficulty. 

7 E. Hille, Notes on linear transformations» II. Analyticity of semi-groups, Ann. of 
Math. (2) vol. 40 (1939) pp. 1-47. See also more recent announcements in the Proc. 
Nat. Acad. Sci. U.S.A. vol. 28 (1942) pp. 175-178 and 421-424; vol. 30 (1944) pp. 
58-60. 

8 See for instance S. Mandelbrojt, Analytic f unctions and classes of infinitely dif­
ferentiate functions, The Rice Institute Pamphlet vol. 29 (1942) No. 1. 
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Fourier series are merely a biproduct is not so widely appreciated.9 

Reducibility of rings. In the ring 9Î, every element a gives rise to 
an operator Ta by virtue of the correspondence x—>Tax~ax, x in 9t. 
The operator Ta is linear and bounded with | Ta\ ^ | a\. This gives a 
representation of 9t as a ring of operators; it is the regular representa­
tion. By introducing a new norm in 9Î equivalent to the old, we have 
| Ta\ — I a I. We shall assume that this has been done. This change is 
not significant as almost all the results which we give later are in­
variant under algebraic and topological isomorphisms. Thus we see 
that the theory of linear transformations may be applied to determine 
the structure of the ring. The complex numbers X for which (a—Xe)""1 

does not exist constitute the spectrum of a. On the other hand, the 
properties of linear transformations may be studied in very large part 
in rings. For if T is a linear transformation over a space $8, T can be 
embedded in a ring 9Î in which it has the same spectrum as over S3. 
The union of the concepts and methods of linear transformations and 
rings produces a numerous and healthy progeny. 

The fundamental formula for studying the reduciblity of a ring 9t 
is the Cauchy integral 

(2) J ' - T - : ! 7~^' 
ZirtJc Ce — a 

where a is any fixed element and C is any simple rectifiable curve 
lying in the complex plane and avoiding entirely the spectrum of a. 
It is easily shown that j2 —j. If for some a and Ct J9^e or 0, and only 
then, will 9? be reducible. An integral of the type (2) expressed for 
operators and in slightly different notation was given many years 
ago by F. Riesz in his book.10 Riesz mentions very briefly the elemen­
tary properties of j . The results of Riesz seem to have been forgotten 
in the last decade; there is no mention of them in the literature, par­
ticularly that literature which could have employed them to consid­
erable advantage. The present author rediscovered (2) and elaborated 
certain of its consequences with some completeness.11 This particu­
lar Cauchy integral is a powerful tool and may serve to shorten very 
considerably solutions which have recently appeared. We shall state 

9 1 . Gelfand, Normierte Ringe, Rec. Math. (Mat. Sbornik) N.S. vol. 9 (1941) pp. 
1-24. The applications of the abstract theory to absolutely convergent series is found 
in the same volume: Über absolut konvergente trigonometrische Reihen una Integrale, 
pp. 51-66. 

10 F. Riesz, Les systèmes d'équations linéaires, Paris, 1913, pp. 117-121. 
11 E. R. Lorch, The spectrum of linear transformations, Trans. Amer. Math. Soc. 

vol. 52 (1942) pp. 238-248. 
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the facts on the reducibility of R in the form of a theorem.12 

THEOREM 1. The ring dt is irreducible if and only if the spectrum of 
every element a in 9t is a connected set. 

If 9Î is reducible, it is the direct sum of two rings, 9î = 9ti+9Î2. 
Furthermore 9ti is isomorphic to the quotient ring 9Î/9Î2- Thus the 
study of reducibility is at its most demanding level the study of ring 
homomorphisms. The general homomorphisms will claim our atten­
tion later. 

If 9? is irreducible it may under proper circumstances be embedded 
in a ring 91' where that property abounds. This may be essayed in 
case 9t is a ring of linear transformations defined over a Banach 
space 33. Then 9î' is taken to be the ring of bounded operators over 53 
which are limits of operators in dt in some topology weaker than the 
uniform—for example, the strong or the weak topology. This pro­
cedure is that which has been used to obtain the structure of a self-
adjoint transformation in Hubert space or of a one-parameter group 
of unitary transformations, also in Hubert space. 

Maximal ideals. The importance of the contributions of Gelfand 
in the theory of normed rings arises from the fact that he first con­
sidered the ideals of such rings.18 His results deal almost exclusively 
with maximal ideals. An ideal 3 is a subset of 8Î closed in the usual 
algebraic sense and in the topological sense as well. A maximal ideal 
is one distinct from 9Î which has no proper extensions. The existence 
of maximal ideals may be established easily by the use of Zorn's 
lemma. Every ideal 3 is embedded in one or more maximal ideals. 
The maximal ideals are characterized by the fact that their residue 
classes contain precisely one scalar Xe. Thus if #£$ft then #=Xe (30 
where 3 is maximal. This gives rise to complex valued functions 
ff(30 =X defined over the class of maximal ideals. Gelfand introduces 
a topology (in fact, more than one topology is used) in the class S0Ï 
of maximal ideals in a standard fashion so that 99Î becomes a bicorn-
pact Hausdorff space. Over this space, the functions #(30 are con­
strained to be continuous. Thus the following theorem is obtained.14 

THEOREM 2. The mapping x—>x(!$) is a homomorphism which maps 

u E. R. Lorch, The theory of analytic functions in normed abelian vector rings t 

Trans. Amer. Math. Soc. vol. 54 (1943) pp. 414-425; in particular, Theorem 2. The 
more important problems dealt with in this paper are treated in the first half of the 
present address. 

18 See footnote 9. 
14 Normierte Ringe, Theorem 10. 
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the ring 9Î onto a subring of the ring of functions continuous on the set 9ft 
of maximal ideals in 9Î. 

Two facts should be noted. First, the ideal St which maps into the 
function which is identically zero is the radical of 9Î (see below). 
Secondly, assuming that the radical is empty or has been factored 
out, the situation is far from clear. The ring of functions #(30 is a 
subring of the ring of continuous functions on 9ft and in this subring 
the norm is not (necessarily) the norm of uniform approximation. 
Thus this theorem gives an initial but not definitive result on the 
structure of 9t. More penetrating results of this type will be consid­
ered in the second half of this address. 

The operation of forming factor rings 9Î/3 will be performed fre­
quently. The topology is introduced into JR = 9?/$ as follows: If 0E9Î 
is the image of a in 91 then | â\ ~g.l.b. | a+q\ where q ranges over 3?. 
With this norm 9î is a (complete) normed ring. 

The radical. A nilpotent is an element a in 9t such that for some 
positive integer n, an = 0. To define the radical of 9Î it is necessary to 
introduce the notion of quasi-nilpotent. A quasi-nilpotent is an ele­
ment a such that for every complex number ju, limnH>0o (AtûOn = 0. The 
structure of the radical has been given by Gelfand.15 It can equally 
well be determined from a lemma used by the author to determine 
the structure of transformations.16 The portion of the lemma we shall 
need follows. 

LEMMA. Let the curve C in formula (2) be the unit circle. Then j in 
(2) satisfies the equation j = limn-«> (e—an)""*x. Furthermore jb =*b if and 
only if limn-* a>nb = 0. 

Suppose that a has only the singularity X = 0, Then the same is 
true for (/xa)n. The integral (2) applied to \xa with C the unit circle 
gives j = e. Applying the lemma, je~e implies that limn-*oo (ju#)W!X30. 
Conversely, if limnH>00 (jua)w = 0, then for all JU, the spectrum of fxa lies 
in the unit circle, hence consists of the one point X = 0. 

THEOREM 3. The quasi-nilpotents in 9Î are those elements a whose 
spectrum is the one point X = 0. 

Applying the theory of maximal ideals it is clear that the quasi-
nilpotents constitute an ideal, the radical $ of 3Î. The radical is the 
intersection of all maximal ideals. Obviously, the ring 91/$ is without 
radical. It is this ring 9î /$ which according to the previous section is 

15 See footnote 9. 
16 See footnote 11, Theorem 7. 
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isomorphic to a function ring. For if x is in $, then #(30 «0 for all 
maximal ideals 3f. 

Since the spectrum of the radical is concentrated at one point all 
methods for cracking the spectrum into pieces, in particular, methods 
applicable to connected spectra, are naturally of little value. The 
structure of the radical is largely unknown. In fact the class of ex­
amples of radicals is as yet quite limited. 

Rings which are fields* A very vital question to all of mathematics 
is the determination of whether there exist normed fields which are 
extensions of the complex field. This problem was settled by Mazur 
in 193817 by proving that no norm could be introduced in the field of 
rational functions with complex coefficients. Mazur also established 
the fact that if in a normed ring we have instead of the inequality (1) 
the equality \a-b\ = | a | • | &|, then 9Î is the field of complex numbers. 
Both of these results seem to be most fittingly proved by the methods 
of the present theory. To establish the first, use is made of the fact 
that the spectrum of an element is not empty. This was proved for 
linear transformations by A. E. Taylor.18 Armed with this theorem, 
the proof is completely trivial. The second result is obtained by an 
appropriate application of our lemma and some associated properties 
of linear transformations.19 

Analytic functions in 9Î. It was noted very early in the development 
of linear operations that the notion of analytic function was destined 
to play here a very considerable role. Probably the first example 
of such a function was given by the equation for the resolvent 
(e—a)"~1 = e + a + a 2 + • • • which is valid for \a\ < 1 . An important 
consequence of this equation is that the regular elements in 9t (that 
is, those elements which have an inverse—also called the nonsingular 
elements) form an open set. A very large literature has been created 
about general analytic function theory. It will be impossible to give 
here an account of it which is in any sense adequate. However, in order 
to outline the principal results of the first part of this paper it will 
be necessary to touch on and examine briefly some of the points of 
view which have been advanced. It is hoped that the brevity of our 
discussion will not produce a distortion of the situation. 

A point of view frequently employed is that which conceives ana­
lytic functions as defined over the complex plane and having values 
which lie in some Banach space. Such a view does not allow one to 

17 S. Mazur, C. R. Acad. Sci. Paris vol. 207 (1938) pp. 1025-1027. 
18 A. E. Taylor, The resolvent of a closed transformation, Bull. Amer. Math. Soc. 

vol. 44 (1938) pp. 70-74. 
19 See footnote 11, Theorem 8. 
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realize the product of two functions. Another view considers functions 
once more defined for complex numbers and whose values are opera­
tors over some Banach space. Here the operation of product of ana­
lytic function is permissible but that of forming a function of a 
function is inadmissible. Although these and still other approaches 
have "generality, " it is still to be decided by each individual worker 
in this field whether they deserve to be considered as legitimate ex­
tensions of the theory of analytic functions. Our own decision is 
adverse. 

A solution to the problem of extending suitably the scope of ana­
lytic function theory was presented to this Society by the author 
slightly over two years ago. It will be described briefly. The domain 
over which this theory is developed is any normed abelian ring JR. 
The functions ƒ(z) treated here are assumed to be defined over a re­
gion in 9t and to have their values in 3t It is rather remarkable that 
the development of the theory parallels very closely the classic course 
in its methods and principal identities. Naturally there are points 
which require considerable care in the case of rings which for the case 
of the complex plane are non-existent or trivial. Starting with a 
definition of derivative couched in the form 

(3) | f(z0+ h) - /(so) - hf(zo)\ < c| h\ 

(for \h\ <8, and so on) the Cauchy theorem is rapidly obtained for 
regions convex in 3Î or those which are the sum of finitely many such. 
The general region in 9Î is of a complicated topological structure and 
the Cauchy theorem has not been investigated for it. What is here 
required is that the "interior" of a curve lie inside the region. This 
will be touched upon later. 

In the next place the Cauchy formula is established. Once more the 
choice of the curve C is critical. For example the formula (2) yields 
not merely the values 0 and e but all other idempotents j . A whole 
class of complications of this sort may be avoided at the outset by 
assuming that 9Î is irreducible. The cycle of fundamental theorems is 
completed with the development of an analytic function into a power 
series. This series converges in the largest sphere with center at the 
point of development in which the function is analytic. It may con­
verge for points outside this sphere. For example, any series converges 
for all points in the radical. 

In the development of the theory of analytic functions up to the 
present point, the ideals in 9î have played no role. There is a class of 
ideas in which the mixture of the two concepts is fruitful. We shall 
give one application of this procedure. The proof is based on the 
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Taylor series expansion for these functions. 

THEOREM 4. Iff(z) is a function analytic in a region D in 9Î and 3f 
is any ideal, then f(z) is analytic in the region D of the ring 9î/3f. Here 
f(z) and 25 represent the images of f(z) and D under the homomorphism 

It should be noted that^under a homomorphism, a sphere in 3Î is 
mapped into a sphere in $ft of the same radius. Thus sphere of con­
vergence goes into a subsphere of the sphere of convergence. If the 
ideal $ of the theorem is a maximal ideal, then ƒ(z) is a function 
analytic in the classic sense since 8Î/3? is the field of complex numbers. 
Thus we see that the ring of functions analytic over a certain domain 
in dt may be mapped homomorphically on a certain ring of functions 
analytic in the complex plane. The set of functions analytic in a do­
main of dt is considerably extensive; it includes as a proper subset 
all functions analytic in the ordinary sense (yet considered as generat­
ing functions in 8Î). The above theorem is merely one of a host of 
homomorphism theorems which may be developed in this field. If the 
homomorphism proceeds in the direction : function of a complex num­
ber to function in a general ring, ƒ (X)—»ƒ(#), it is commonly referred 
to as an operational calculus. As we shall meet more homomorphism 
theorems later it is worth noting the specific hypotheses which sup­
port them. 

A further homomorphism may be indicated at this point since it 
has received attention in the literature. Suppose C is an arbitrary 
rectifiable arc in 9Î, closed or not, 0(f) is a function continuous on C 
and a is an element in dt for which (̂ —a)"""1 exists, f on C. Then 
(f—2)""1 exists for s in a certain neighborhood of a and 

(4) M-hSr^* 
is easily shown to be analytic in this neighborhood. If now C is taken 
to be a simple closed curve in the complex plane, z is held fast at the 
value a where a has its spectrum entirely within C and if #(f) is a 
function of the complex variable f analytic in the classic sense in a 
region containing C and its interior then we may say that 0(f) in (4) 
defines the element <j>(a) in dt (instead of ƒ (z) or f (a)). This gives an 
operational calculus 0(X)—»0(a) which has been treated by Gelfand, 
Dunford, and A. E. Taylor.20 The element 0(a) is termed an "ana-

20 Gelfand, loc. cit. Theorem 19; N. Dunford, Spectral theory, Bull. Amer. Math. 
Soc., vol. 49 (1943) pp. 637-651, in particular p. 641; A. E. Taylor, Analysis in com­
plex Banach spaces, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 652-669, Theorem 9. 
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lytic function of a."21 Certain important functions of a are excluded 
by this device. Suppose for instance that the spectrum of a is the 
circle | X| = 1 . Then since log f is not analytic in any region containing 
this circle, log a is not produced by this operational calculus. How­
ever the function log z may well be defined for z~ a. An explanation 
for this phenomenon lies in the fact that log a does not exist in the 
subring of 9Î generated by a since the spectrum of a in the smaller 
ring consists of the solid circle |X| 2*1. 

Up to the present moment there is little known of the character 
of the domains over which analytic functions are defined and of the 
Riemann surfaces associated with them. An example will indicate 
some of the phenomena which may be expected. The regular ele­
ments a in 8Î (those for which a"1 exists) form a topological group. 
This group consists of one or more maximal connected open compo­
nents or domains.22 If the number is more than one, it may be shown 
that it is infinite. The component containing e is called the principal 
component. The function log 2=/Jf~1df is defined precisely for the 
elements z in the principal component. It is periodic and has for its 
primitive periods the elements 2irij where j is any idempotent. These 
idempotents may be finite in number in which case one is dealing with 
a direct sum of irreducible rings; they may be denumerable or even 
nondenumerable. An example of the last is furnished by rings gen­
erated by suitable resolutions of the identity in reflexive spaces. This 
gives one a preliminary idea of the Riemann surface for log z which 
may have nondenumerably many sheets. In this connection the fol­
lowing extension of the Poincaré-Vol terra theorem may be cited. Its 
proof is quite simple. 

THEOREM 5. If a ring 9Î is separable, then any analytic f unction de­
fined over a region in 9Î has at most denumerably many values. 

It is not clear whether the same result applies to non-separable 
rings which are irreducible. 

It is apparent from the example w = log z just considered that a pe­
riodic analytic function may have more than two periods; indeed it 
may have any number, finite or infinite, of periods. But if the ring is 
irreducible the picture becomes different. It seems probable that all 
primitive periods after the first two will lie in the radical. That this 
situation can arise may be shown by examples. 

21 As a special case, this terminology gives in the ring of complex numbers: sin 2 
is an analytic function of 2 ! 

22 The first discussion of these components was given by Nagumo. See foot­
note 2. 
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For irreducible rings the notion of interiority to simple curves can 
be established by means of the integral (2) whose only possible values 
in this case are 0 and e. A simple curve C:z*=z(t), O ^ J ^ l , is one for 
which h9*h implies [z(h) — zfô)]"""1 exists. The interior of Cis then de­
fined to consist of the points for which the integral equals e. It may 
be shown that interior and exterior points do exist. Although the in­
terior and exterior are open sets they are not necessarily connected. 

The question of ring extensions was raised in connection with re-
ducibility. The question arises again in this form. If a is singular in dt 
does there exist an extension 9îi of 9t in which a is regular?28 Further 
if a is regular in 9ti, does there exist an extension 9Î2 of 9ti in which a 
is in the principal component (of the group of regular elements)? If 
the answer to this is affirmative, then a may be embedded in a one-
parameter group. This is a question "in the large." An alternative 
formulation of this problem is: Under what circumstances does log a 
exist in a ring extension? 

Rings with one generator. Let 9t be any normed ring and let a be 
arbitrary in 9?. Consider the subset of 9î consisting of the polynomials 
in a (and e) and their limits. This set is a ring which is a subset of 9î 
and will be designated by dt {a} .24 It is clear that the spectrum of any 
element in dt{a} will include the spectrum of the same element con­
sidered as belonging to 9?. The expansion and shrinkage of spectra 
under ring contraction and extension is subject to certain laws. In 
particular, spectra which are purely real are absolute.26 From this 
point forward we shall treat exclusively rings 8Î{a}. 

The elements in 9t{a} may properly be called functions of a. 
The nature of these functions will be examined. For example if 
9? is the ring of all continuous functions ƒ(#), 0 ^ x ^ l , with 
| / | =l.u.b.[o,i] \f(x) |, then by the Weierstrass approximation theorem, 
81 = 9t {x}. The elements of 9î {x} are in this case continuous func­
tions of x. This and the examples 3, 9, and 10 introduced earlier indi­
cate that each ring $l{a} defines a special type of function of a; in 
particular although every ring 9Î {a} contains analytic functions of a 
(for example, exp (a), sin a), it does not except in special cases consist 
exclusively of such functions. It will be seen later that rings $l{a} 
are locally homomorphic to rings of types 3, 10, or 9. Theorem 2 is an 
example of a homomorphism to a ring of continuous functions. Our 

28 A contribution to this problem has been made by G. Silov, On the extension of 
naximal ideals, C. R. (Doklady) Acad. Sci. URSS. vol. 29 (1940) pp. 83-84. 

24 Observe that in the notation current in abstract algebra, %l[x] and 9fc(#) indi­
cate extensions of $t. For us here, 91 {a} is a contraction of 9Î. 

26 See footnote 12, Theorem 13. 



458 E. R. LORCH [July 

study may be considered as a reformulation and the first steps in a 
solution of the frequently considered problem of determining the ana­
lytic f unctions of an operator. The details of this undertaking will ap­
pear separately; in what follows, we shall give a brief review of the 
principal results. The problem may be recast in the following form: 
To determine conditions in order that a ring dt{a} should be homo-
morphic to a function ring of a given type. The types we shall discuss 
are (i) The functions analytic in a domain and continuous on its 
boundary; (ii) The functions infinitely differentiate on some interval. 
The case of functions of class O , w^l» can be elaborated on the 
basis of those of class C00. The case of functions of class C° is handled 
by Theorem 2. 

The study of rings may be considered as a study in polyno­
mial approximation since all elements of 9î {a} are limits of polyno­
mials in a. The approximation is carried out over the spectrum of a. 
The norm for the approximation is at least as powerful as the uniform 
norm since |^>(Ö0| S=|/>(^)|« The resolvent set of a (the set comple­
mentary to the spectrum) is always connected. 

If a is a quasi-nilpotent then the ideal (a) is the only maximal 
ideal in dt{a} and is identical with the radical. Examples show that 

may have a radical even when a is not a quasi-nilpotent. 

Types of maximal ideals. We shall introduce a classification of 
maximal ideals in rings W{a}. This is an initial step in the study 
of the structure of the class of all ideals. For the rings treated here 
the maximal ideals are easily singled out. They are precisely the prin­
cipal ideals (a —\e) where X is in the spectrum of a. Furthermore, 
Gelfand's topology of the class of maximal ideals coincides with the 
usual metric of the complex plane. If a is singular then for any n ̂  1 
the ideal (an) includes the ideal (an+1). The inclusion may or may not 
be a proper one. In what follows, the inequality (an) ^ (an+1) will in­
dicate proper inclusion. Also, if for an integer w, (an) = (aw+1), then 
for all integers r è 1, (an+r) = (an+r+1). This leads us to our basic classi­
fication. 

DEFINITION. For the ideal (a), one of the three following cases will 
occur: 

(i) (a) = (a>) (a») . 
(ii) (a)*(a»)j* • • • *(<»»)-(<»*«)-
(iii) (a) 9* (a*) 9* • • • *(a")s* 

The ideal (a) will be termed an ecto-, meso-, or endo-ideal according as 
it falls under case (i), (ii), or (iii). 
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All three cases may arise. One may see that from a consideration 
of rings 9Î{x} in examples 2, 9, and 3 respectively. A more penetrat­
ing example of (i) is found in the ring 9î{i?} generated by a self-
adjoint transformation in Hubert space. Here the spectrum of H is 
real and every ideal (H—\I) is an ecto-ideal. 

By Theorem 2 the ring 9? {a} is homomorphic to a ring of functions 
continuous over the spectrum of a. For ecto-ideals (a — Xe), little more 
can be said. However if the ideals (a — \e) are meso- or endo-ideals the 
"functions" f (a) are differentiate and may even be analytic. The pre­
cise facts will be stated below. We shall, however, give at this point a 
consequence of the endo-concept. Suppose that (a) is an endo-ideal 
and that ƒ is in 9î{a}. Then for any integer n we have a unique de­
composition 

(5) ƒ « Poe + fixa + • • • + pna
n + gn+i, 

where gn+i£(0n+1)- This equation may be regarded as a form of 
Taylor theorem with remainder. It asserts that there exist projec­
tions of dt{a} on the ideals (a), (a2), • • • . These projections are the 
bounded linear transformations Tn such that Tnf=gn. Since Tnqn~çLr» 
T* = T. 

It may be shown that if X is an interior point of the spectrum of a% 

then the ideal (a—Xe) is an endo-ideal. The frontier points of the spec­
trum naturally call for delicate handling. Rather little is known about 
them at the present time. 

A useful concept is that of a normed power series ring. Such a ring will 
consist of abstract power series which have been normed in some man­
ner. In addition a ring of power series must contain all polynomials and 
convergence in the ring must imply the convergence of the coefficients 
of every power. Formula(S) asserts that the mapping /-*{j30,j3i, • • • } 
transforms dt{a} into a ring of power series. In fact, if we 
set 9=IXr«i(aw) ^ e ring of power series is isomorphic topologically 
(by definition) and algebraically to the quotient ring 9î{a}/3f. 

Rings of power series are not limited to rings of analytic functions. 
Rings of infinitely differentiable functions, in particular quasi-
analytic rings, are of this type. In addition there exist rings which are 
the direct sum of a radical and the field of complex numbers, that is, 
rings which are almost entirely radical, which are power series rings. 
In these such series as SiT-o^Ia* m aY converge absolutely. 

Rings of analytic functions. If X is any point in the spectrum of a, 
(a—Xe) is a maximal ideal. Thus if / £ 9 î { a } , by Theorem 2, ƒ is 
mapped homomorphically on a complex valued function /(X) defined 
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over the maximal ideals in 9ï{a}, in this case, the spectrum of a. 
This function is continuous over the spectrum. For suppose J£n(X)} 
is a sequence of polynomials such that limn ̂ pn(a) =»ƒ. Then 
Pn(a) ^pnQCje (a-\e) ; and since | pn(a) -pm(a) | ^ | £n(X) —£»(X) | 
the convergence of pn(\) to/(X) is uniform. 

Suppose now that the spectrum of a contains a neighborhood D 
of the origin. Then /(X) is not merely continuous but also analytic 
in this neighborhood. A preliminary result is then that 9î{a} is 
homomorphic to a ring of functions analytic in D and continuous 
over the closure of D. Let us suppose that under this homomorphism 
f-*f(z). It may be shown readily that the ideal (a) is an endo-ideal; 
in fact every ideal (a—Xe) where X£Z> is an endo-ideal. Hence by 
equation (5) we may write 

(6) f~Poe + pia + p2a* + 

The power series need not converge. (It is only in the ring 3î{a}/3 
that a norm is defined for it.) A question which is raised immediately 
is: What is the relation between (6) and the Maclaurin expansion of 
ƒ(2)? The answer is the expected one: The latter expansion is 
ƒGO =j30+j3i z+P&2+ • • • . This fact is fundamental. 

Now suppose that D is the largest domain in the spectrum of a 
which contains the origin. Consider for every X in D the 
ideal 3x=H»«i(a—Xe)n. Thus £K consists precisely of all elements ƒ 
such that in the expansion (5) in powers of (a—X0), each ft is zero. 
Hence ƒ(z) = 0 in D. This means that 3»x is independent of X, 3x = 3 . 
The principal theorem may now be stated. 

THEOREM 6. Let 9?{a}, D, and 3 satisfy the conditions given above. 
Then the ring 9î{a}/3 is isomorphic to a subring of the ring of f unc­
tions analytic in D and continuous over the closure of D. Under this 
isomorphism a—>z. If {fn} is a sequence such that lim».** ƒ,»=ƒ, then 
l im ,^ fn(z) -f(z) uniformly in D. 

This theorem states that 9î{a} is locally (in the neighborhood of 
the origin) homomorphic to a ring of analytic functions. The norm 
dominating the ring of analytic functions is usually stronger than 
the ordinary uniform convergence norm. The ideal 3f clearly contains 
the radical of 9t {a ). It also contains those elements generated by the 
connected components in the spectrum of a which are distinct from 
the component containing D. It is also clear that in JR » $ {a} / 3 the 
element â has for its spectrum at least the closure of D. Whether it 
can contain more is not known. 
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Rings of infinitely differentiable functions. The requirement that 
the spectrum of a contain a neighborhood will be lightened. In this 
section will be considered certain rings 9î{a} where a has a real 
spectrum. More exactly the spectrum is to contain a certain real 
interval [a, j8], j3—a>0, and furthermore, for every X in this interval, 
the ideal (a —\e) is to be an endo-ideal. If {^n(X)} is a sequence of 
polynomials such that limn-oo£n(ûO =ƒ where ƒ is some element in 
dt {a}, then for any integer m 

pn(a) m pn(\)e + pi (X)(« - Xe) + • • • 

+ pn (X)(a — Xe) mod (a — Xe) 

Conditions can now be enforced to guarantee that not merely 
limn^nCX) =/(X) but that for every m£l, lim«^o£lw)(X) =ƒ<*»>(X). 
It was seen earlier that for every X and m there exists a projection 
$t{a}—*(a—\e)m. The condition that will be imposed is that the 
bound of this projection be a constant Mm independent of X on 
[a, /?]. Finally let O be the ideal 0 = JJm,\(a--\e)fn where the inter­
section is formed for all X on [a, j3] and all w ^ l . We are ready to 
state the principal result of this section. 

THEOREM 7. Let $l{a}f [a, £], and 0 be as above. Let the pro* 
jections 9î{a} —*(a —Xe)*1 be of bound Mm independent of\. Then the 
ring dt{a} = 9 î { a } / 0 is isomorphic to a subring of the ring of all 
functions infinitely differentiable on [a, /3]. The isomorphism carries a 
into x. If in dt {a}, limn-oo/n =»ƒ then uniformly on [a, j3] and for w ^ l , 

The condition of quasi-analyticity of a ring may be formulated 
in terms of ideals in a simple fashion. A ring of functions is quasi-
analytic on [a, |8] if /(w)(X) = 0, w^O, for some X£[a, )8] implies 
ƒ(#)=() identically on [a, j3]. If we assume for the sake of simple 
notation that O in the above theorem is the zero ideal then we may 
say: 9î{a} is quasi-analytic if and only if for some X on [a, /3], 
3x = nr«i(0"-^)Ws=!O« It may be quickly verified that if 9t{a} is 
quasi-analytic, it is a normed power series ring. This may be seen 
from formula (5) and the discussion which follows it. 

Absolute values of real elements. The formula (2) is the principal 
one for determining the reducibility of rings. In the exploitation of 
this formula, care must be taken that the curve C should not cross 
the spectrum of a. The question has been raised whether there are 
circumstances under which C is allowed to cross the spectrum. We 
shall answer this in the affirmative, not indeed for the integrand in 
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(2), but for a variation of it. Suppose for the sake of convenience 
that a has a real spectrum which includes an interval around X = 0. 
Suppose further that for all real a5^0, for some M>0, and some real 
5<1, | a (aie—a)"1 \ ̂ \a\"aM. Then the following improper integral 
exists: 

(«) i = T ^ I 7 d?> 
2wtJ c Ce — a 

where C is a simple rectifiable curve cutting the axis of reals orthog­
onally, once at X = 0, and once more far to the right. For example C 
might be the circle |f — |a | | = | a | . It may be seen easily that the 
spectrum of b is real and non-negative and that b(a — &)=0. In fact 
we may say that 6 = max(a, 0) and we may define the absolute value 
of a b y | a | =26—a. 

The condition \a(aie —a)"1] S \a\~'M implies that (a) is an 
ecto-ideal. In fact the most frequently discussed cases of ecto-ideals 
seem to satisfy this inequality and hence lead to the notion of ab­
solute value. 

The use of the terminology max(a, 0) and | a | may be justified as 
follows. According to Theorem 2, the element a in Sft{a} corresponds 
to the function/(X) =X. If b corresponds to g(X), formula (8) modulo 
(a<-\e) shows quickly that 6(X)=X if X s 0 , &(X)=0 if X<0. Thus 
&(X)=max(X, 0). If we now assume that 9t{a} has no radical, the 
correspondence of Theorem 2 is an isomorphism. 

The principal ideals (a — b) and (6) have no common elements, 
their product is zero and together they span the maximal ideal (a). 
In the cases usually considered they not only span (a), but their di­
rect sum is (a). 

These results may be used to prove the fundamental theorem con­
cerning the structure of bounded self-adjoint transformations in 
Hubert space. It is common knowledge that in establishing the 
equation 

(9) H - ƒ Xi£(X), 

no matter which of the many possible paths is taken, use has to be 
made at one or two critical points of powerful—if one prefers, subtle— 
tools whereas the remainder of the argument proceeds along more 
obvious lines. In the proof which we suggest these critical points are: 
(1) If H is self-adjoint and its spectrum is contained within the real 
interval [a, j8], then |H\ =max ( |a | , |j3|) (or alternatively, 
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OJ^ (Hft ƒ) g]8, (ƒ,ƒ)== 1). (2) If y is an arbitrary point in [ay j3] then 
there exist two self-adjoint transformations Hi and H2 in 9ft {H\ such 
that the zero spaces of Hi and IZ2 form orthogonal manifolds whose 
direct sum is the Hubert space $ and such that H~Hi-\-H%, HiHz—O. 
The spectrum of Hi lies essentially in [a, 7] , that of H% in [7, j8]. 

Proof of the first point is carried out with the help of an integral 
due to Hille which allows one to embed certain transformations with 
real non-negative spectrum in a semi-group.26 The only transforma­
tion we need is H112 in case a g£ 0. The second difficulty is surmounted 
by means of formula (8) in the manner which we have indicated. 

BARNARD COLLEGE, COLUMBIA UNIVERSITY 

'8 See footnote 7, Theorem 14. 


