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FUNCTIONS OF SEVERAL COMPLEX VARIABLES 

W. T. MARTIN 

1. Introduction. An analytic mapping of a domain D in the space 
Eu of k complex variables £1, • • • , zk is a mapping defined by 

(1.1) T: z\ = ƒ,(*!, • • • , **). j = 1, • • • , £, 

where the fj(z) are analytic in D. We shall consider only univalent 
(schlicht) domains D contained in the finite portion of the space JE2&. 
An important result in the theory of analytic mappings states that 
the mapping is topological (that is, 1-1 and bi-continuous) if, and 
only if, the Jacobian 

(i.2) m**d(ju--- , / * )M*I , •••,**) 

is different from zero at each point of D (Carathéodory [12]).1 

An analytic mapping T is called an inner mapping of a domain D 
if TDQD. It is called an automorphism olDHT is 1-1 and if TD=D. 

In 1907 Poincaré [17] showed that, given two domains D and D', 
it is not always possible to map D onto Df analytically. Since that 
time, several general problems have been considered. One of these 
problems is to indicate some general rules which tell whether or not 
two given domains can be mapped analytically upon each other. A 
second problem is to determine a family of special domains, in terms 
of some simple properties, the family to be such that every domain 
can be mapped analytically onto one of these special domains. 

In this talk I shall deal with a special case of the first of these two 
problems together with certain results on the second problem. The 
work on the first problem which will be presented is based upon 
Henri Cartan's theory of mappings of domains onto domains of circu­
lar type. The work given on the second problem is based upon Berg­
man's theory of representative domains. In preparing this talk, I have 
used freely the excellent résumé on analytic mapping contained in 
the book on several complex variables by Behnke and Thullen [4]. 
I have also used freely material from the manuscript by Bochner 
and the speaker of a book on several complex variables, now in prepa­
ration [l0]. I am indebted to Professor Bochner for permission to use 

An address delivered before the New York meeting of the Society on October 30, 
1943, by invitation of the Program Committee; received by the editors November 9, 
1943. 

1 Numbers in brackets refer to the Bibliography at the end of the paper. 
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material from this manuscript. The approach used in much of this 
talk follows the approach of that manuscript, and in addition certain 
so far unpublished results from it are given here. 

Let D be a domain containing the origin, and let (1.1) be an analyt­
ic mapping of D onto a domain D', with a fixed origin. We shall fre­
quently write (1.1) in the form 

(1.3) T: zj = aij-zi + • • • + ahiZh + (higher powers), 

j = 1, • • • , k, 

to mean that the analytic functions fj(z) defining T have the expan­
sions 

(1.4) fj(z) = aifii + • • • + aufik + (higher powers) 

in a neighborhood of the origin. 
Again, if D is a domain containing the origin and if ƒ(%, •••,**) is 

analytic in D we shall sometimes have occasion to develop ƒ in the 
neighborhood of the origin in terms of homogeneous polynomials 
(a diagonal series) 

oo 

(1.5) ƒ(*!, • ••,**) = ]£ Pn(*l, ' ' • , «*)• 

The expression Pn(z) is a homogeneous polynomial of degree n and 
is given by 

(1.6) Pn(z) = — f *ƒ(«!«*. • • • , ***)*-w<0 
27T«/ o 

for 0 in a sufficiently small neighborhood N of the origin. From (1.6) 
we see that if \f(z) \ ^M in N, then 

(1.7) \Pn(z)\^M for zGN, n = 0, 1, 2, • • • . 

2. Some uniqueness properties of analytic mappings, H. Cartan 
[13] and C. Carathéodory [12] have proved two very elegant results 
on the uniqueness of analytic mappings. We shall give these two re­
sults here: 

THEOREM 1 (CARTAN) . Let D be a domain containing the origin and 
let T be an analytic mapping of D into a bounded domain D'QD. If 
the linear part of T is the identity, that is, if T has the form 

(2.1) T: z\ = ƒƒ(*!, • • • , * * ) = * ƒ + {higher powers) J = 1, • • • , k, 

then T is actually the identity 
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(2.2) ƒ/(«)«**, J = 1 , • - . , * . 

PROOF. Expand the ƒ/(») in terms of homogeneous polynomials: 

(2.3) ƒ,(*) = *, + P/,(«) + Pr^lW + • ' • 

with f y an integer not less than 2. In writing//s) in this form, we are 
assuming that the polynomials PJ

n of degree n for Kn<rj all vanish 
identically. Now iterate the mapping. We find that T2 has the ex­
pansion 

(2.4) T2: *ƒ' = %\ + p/,(«') + • • • = * * + 2P/,(s) + • • • , 

and in general 

(2.5) Tm: z™ = *i + f*Pti<*) + -- • 

Now T maps .D into a bounded domain D'QD, hence the same is 
true of all the iterates T2, T8, • • • . Thus the mapping functions 

(2.6) / r w = «/+»wyw + ---
are uniformly bounded in D. By the result given at the end of §1, 
this implies that 

| rnPlj (*) \ £ Mr fori = 1, • • • f *; w = 1, 2, • • • , 

for s in a sufficiently small neighborhood of the origin. This implies 
that P^(*)s50 and hence (2.2) holds. 

Carathéodory's uniqueness theorem follows almost immediately 
from Cartan's theorem. 

THEOREM 2 (CARATHÉODORY). There exists at most one 1-1 analytic 
mapping of a domain D onto a bounded domain D' which maps a point 
O of D onto a point Of of D' and whose first partial derivatives in 0 have 
prescribed values. 

PROOF. If 5 and T are two such mappings, then the mapping ST"1 

is a mapping of Dr onto itself and the hypotheses of Theorem 1 are 
satisfied. Thus 

ST~l = I or S = T. 

An important corollary has been derived from Theorem 2. First 
we make a definition. A circular domain is a domain which is mapped 
onto itself by all the mappings 

T(6) : zl = eiezh j = 1, • • • , k; 0 ^ 6 < 2w. 

A circular domain is called proper if it contains the origin. Circular 
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domains were introduced by Behnke [l] and Carathéodory [ i l ] and 
have been investigated by various writers. We shall return to them 
in §4. For the present we give only the following result. 

COROLLARY. Every automorphism of a proper bounded circular do-
main which leaves the origin fixed is a homogeneous linear transfor­
mation. 

PROOF. Let 

A: zj = X Pn(*u • • • » **)> J = 1» • • • » *. 

be any such automorphism. Then T(9)A has the form 
00 

T(6)A: zf = £ e*pUzi, • • • , z*), 

and AT(6) has the form 

AT(8): zj = S Pl{zj\ ••• , zj') = £ en"pi(z). 

Since D is circular and A is an automorphism, both transformations 
T{B)A and AT(d) are automorphisms of D, with the origin fixed. 
Also, both have the same linear parts. Hence, by Theorem 2, they 
are the same. This can happen, however, only if Pj

n(z)=0 for n>l, 
that is only if A is linear. 

The corollary has been proved by Behnke [2], Bergman [5], 
H. Cartan [13], and Welke [18]. Bergman's proof, which is by a 
different method, will be given in §5. 

3. Inner mappings and automorphisms with a fixed point. Cartan's 
theorem tells us that if we have an inner analytic mapping T of a 
domain D containing the origin into a bounded domain JD', and if 
the linear part of T is the identity, then T is actually the identity. 
Now suppose we have a general inner analytic mapping of a bounded 
domain D with the origin as a fixed point: 

(3.1) T: z'j = aijZi + • • • + ahjZh + • • • , j = 1, • • • , k. 

Denoting by AT the value of the functional determinant at the 
origin : 

(3.2) AT = I a»,-|»t/-.i ...,*, 

Cartan [14] and Carathéodory [12] have shown that 
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(3.3) | A * I S ; I 

holds for every inner mapping, with the equality 

(3.4) | Ar| — 1 

holding if and only if T is an automorphism. This result is very im­
portant in the theory of analytic mapping and will be useful to us 
in a later section. 

The result has recently been generalized a little i>y Bochner and 
the speaker [lO]. Denoting by Xi, • • • , X& the characteristic roots of 
the matrix (a»y), they have shown that 

(3.5) | Xx | ^ 1, ••• , |X»| S 1 

holds for every inner transformation (3.1) and 

(3.6) |Xi| = ••• « | X » | = 1 

holds if and only if T is an automorphism. 
We shall not give the proofs of these results. 

4. Groups of automorphisms of a bounded domain with a fixed 
point. Near the end of §2 we introduced the notion of a circular 
domain, a domain which with a point (s°) contains also all the points 

(4.1) (z\e\ • • • , zie*), 0 g 6 < 2ir. 

Cartan [13] has generalized this notion as follows: Let (mi, • • • , mu) 
be k integers (positive, negative, or zero). Then an (wi, • • • , m*;)-
circular domain is one which, with a point (s0), contains all the points 

(4.2) {zxe , - • • , * * ) , 0 ^ 0 <2TT. 

The domain is called proper if it contains the origin. 
The domains of circular type play in several respects the role of 

the circle in one complex variable. It is, therefore, natural to question 
whether every bounded domain D can be mapped analytically onto 
some domain of circular type, or if not, which ones can. In the first 
place, an (mi, • • • , ra/0-circular domain admits an infinite number of 
automorphisms with the origin as a fixed point, namely those of (4.2). 
Therefore, if it is possible to map analytically a given domain D onto 
an (mi, • • • , m/t)-circular domain, the domain D must admit an in­
finite number of automorphisms leaving an interior point fixed. 
Cartan [13] (for k = 2) has shown that this condition is also sufficient. 
Following the résumé given by Behnke and Thullen [4], we shall 
give a brief outline of Cartan's argument. 
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THEOREM 3 (CARTAN). The group G of all automorphisms of a 
bounded domain D which leave the origin fixed (O&D) is isomorphic 
with a compact group T of homogeneous linear transformations; the 
determinant of each transformation of T is of absolute value unity. 

By Carathéodory's theorem, Theorem 2, the group V consists 
merely of the linear parts of the members of G, and by (3.4) the de­
terminant of each transformation of G is of absolute value unity. 

An infinite compact group T of homogeneous linear transformations 
(in the space of two complex variables) always leaves invariant an 
Hermitian form 

(4.3) Aww + Bzz + Cwz + Cwz 

(Weyl [19]). By a suitable linear transformation L this Hermitian 
form will be transformed into a normalized form 

(4.4) wü) + zz 

which is invariant under the corresponding group r* = ZTL~1. 

THEOREM 4 (Cartan). Every infinite compact group of homogeneous 
linear transformations, which leave invariant the form (4.4), contains a 
subgroup of the form 

(4.5) r».p(0): w' = weim9> z' = se**", 0 g 6 < 2TT. 

Let Go be the subgroup of G which is isomorphic to the group 
{Tm%p{8)}. Denoting by A{6) the isomorph in G of Tm,p(d)f we know 
that A (0) must have the form 

w' = f(w, z; 6) = eim9w + • • • , 
(4.6) A(0): JK 

z' = g(w, z\ 6) = etp6z + • • • . 
Now define 

(4.7) 

1 c2* 
F(w, z) = — I f(w, z; e)e~imBde, 

2TJO 

l r2v 

G(w, z) = — I g(w, z; 6)e^ipdde. 
2TJQ 

Then Cartan showed that except possibly for certain exceptional 
cases the mapping 

(4.8) S: w'=*F(wyz)y z' = G(w, z) 

is a 1-1 analytic mapping of D onto a proper (m, £)-circular domain 
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with SO — O. (It is easily seen that the linear part of S is the identity.) 
In the exceptional cases, Cartan showed that S can be replaced by a 
mapping S which has the requisite properties. Hence, we have: 

THEOREM 5 (CARTAN). If a bounded domain D admits an infinite 
group G of automorphisms with the origin as a fixed point (OÇzD),then 
D can be mapped in a 1-1 analytic manner on a bounded proper (m,p)~ 
circular domain D' with the origin going into the origin. 

The structure of the group tells one what type of circular domain 
it will go into. 

It is known that there exist bounded domains D which possess the 
following property: given any point P in D, the automorphisms of 
D which leave P fixed are finite in number [13 ]. Hence, not every 
bounded domain can be mapped onto an (m, p)-circular domain. 

This concludes our résumé of Cartan's work. Certain aspects of it 
have been generalized. We shall indicate this generalization. 

Let D be a bounded domain in Eu containing the origin, and let 
G be a group of automorphisms of D with the origin as a fixed point. 
If T(a), r(j3), and so on, are elements of G, and if we write the ex­
pansion of T(a) in the form 

T(a): zj = a[{a)zi + • • • + ak(a)zk 
(4 «9) _ ƒ n i nk 

~r JLI ö n i . . - . »^ajz i • • • Zh , 

then Carathéodory's uniqueness theorem, Theorem 2, states that if 

(4.10) <&*)*= a!(0), i , i = 1, ••• , *f 

then 

(4.11) ani...„fc(a) = ani...nk(0), j = 1, • • • , k; nx + • • • + nk ^ 2. 

Actually a little more than this has recently been proved [l0]> 
namely: 

THEOREM 6 (BOCHNER AND MARTIN). If T(a), r(/3), and so on, are 
elements of a group G of automorphisms of a bounded domain D with 
the origin as a fixed point, and if (J, n\, • • • , nù) is any fixed multi-
index, then corresponding to any e>0, there exists a 8>0 such that 

(4.12) è I <&«) - *to) | S * 
p,cr«»l 

implies 

(4.13) | d4...nfc(oO - ani...nh(&) | ^ e. 
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(The a's are the coefficients in the expansion of the T's as in (4.9).) 

The proof of this theorem uses strongly the uniqueness theorem of 
Carathéodory. We shall omit the proof. By use of Theorem 6, Bochner 
and the speaker [lO] have obtained the following theorem which is 
related to Cartan's theorem, Theorem 5. 

THEOREM 7. If {T(a)} is a group G of automorphisms of a bounded 
domain D with the origin as a fixed point, then there exists a change of 
coordinates S in the neighborhood of the origin 

S: z'j = Zj + (higher powers), j = 1, • • • , k, 

such that the given automorphisms are linear transformations in the new 
coordinates, 

L(T(a)) = ST(a)S~\ 

We shall outline the proof of this theorem as given in [10 ]. 
By Theorem 2 each T(a) is uniquely determined by L(T(a)) and 

hence by the k2 complex numbers a£(a), /*, j = 1, • • • , k. Thus, every 
element of G can be identified with a point in Euclidean space E of 
2k2 dimensions, and G itself with a bounded point set in £ . Also since 

x(r(«).r08))-£(r(«)).L(rG8)), 
the group product /fa of any two elements a, j8 of G is given by 

k 

am(pa) = 2Ü) akP)<ttn(<x)> j \ f» = 1, • • • , *. 

Thus in the ordinary Euclidean topology of Et the group product jSa 
is a continuous function of /3 and a. 

Now, since G is bounded, there exists an additive measure fx on G 
with the following properties among others: 

(i) the measure of the total set G is 1, 
(ii) the measure is group invariant, and 

(iii) every function f (a) on G which is uniformly continuous on G 
(in the topology of E) is integrable. 

Now Theorem 6 states that each coefficient of T(d) is uniformly 
continuous on G. Hence, by property (iii) each coefficient of T(a) is 
integrable relative to our measure. It follows that the transformation 
L(T(orx))'T(a) is measurable and it can be shown that the desired 
change of coordinates 5 is given by 

5 = Ç L(T(cTl)-T(a)dn(a). 
J Q 
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5. Bergman's representative domains. In connection with the 
second problem of the theory of analytic mapping mentioned in the 
introduction, Bergman [5] has introduced the notion of a repre­
sentative domain of a class of equivalent domains, and in a series of 
papers he has developed several interesting aspects of the theory. A 
portion of his work has been simplified by Welke [18] and parts of 
it have been summarized by Behnke and Thullen [4] and by Bochner 
and the speaker [lO]. In this section we shall follow the latter sum­
mary for the most part. 

First we give two definitions due to Bergman. 
Normalized mapping—An analytic mapping of a domain D con­

taining the origin is called normalized (with respect to the origin) if 
its linear part is the identity. 

Equivalent domains—Two domains D and D' are called equivalent 
if they can be mapped onto each other by a 1-1 analytic normalized 
mapping. 

We shall use these two notions later in this section. 
Let D be a domain in Eu and denote by £2 the set of all functions 

f(zit • • • , Zh) analytic in D and such that the norm 

(5.D 11/11 = [ jUwVd^Y 

is finite (do)z=dxidyi • • • dxkdyù). 
If D has finite volume then every bounded analytic function in D 

belongs to «£2. If D is also bounded this includes all polynomials. For 
the sake of simplicity, we restrict ourselves to bounded domains D. 
The space JÇJ is then a Hubert space. 

Now take a point in Dt call it the origin and expand all functions 
ƒ(2) of .£2 in power series about the origin. It can be shown that there 
exists a unique minimal function 

(5.2) f0(z) = 1 + (higher powers) 

such that 

(5.3) ||/o|| < 11/11 
for every ƒ of £2 with the development 

(5.4) ƒ(z) = 1 + (higher powers). 

The same is true for functions of the form 

(S. S) fj(z) = Zj + (higher powers), 
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that is for each j » 1, • • • , k there exists a unique function fj(z) of «£2 
for which 

(5-6) ||/,-|| < Ml 
holds for every ƒ £«£2 in D with the development 

(5.7) ƒ(z) = Zj + (higher powers). 

Bergman has shown that these (k + 1) -minimal functions possess 
some beautiful forms of invariance. Consider a 1-1 normalized 
analytic transformation 

(5.8) Zj = Z}(z{, • • • , * * ' ) — */ + (higher powers) 

from D onto a domain D' with non vanishing Jacobian 

(5.9) J{z') = ô(*lf • • • , zh)/d(z{, • • • , * * ' ) . 

Now, by the ordinary transformation of variables 

(5.10) f\ f(z) \'do>. = f I /(*(«0) I2 I /OO I1*».', 

and it is not hard to see that 

(5.11) ƒ(*)•*/(*(»0)/(«0 

is a 1-1 transformation of «£?(z) onto jÇp(z'). Also since 

(5.12) / ( O = 1 + (higher powers) 

we have 

(5.13) ffw)) - / f ' W O O , i = 0 , 1 , • • • , k, 

where ff{z) a n d / f ( 2 ' ) are the minimal functions for D and D' re­
spectively. Hence at least in a neighborhood of the origin 

(5.14) /? («0O)/ / f (*(«0) m ff\z')/fo'(z'), j=l,---,k, 

and thus these quotients are absolute invariants. Omitting the super­
script D, we denote these functions by W\{z)t • • • , Wk(z) and we ob­
serve that they have the expansion 

(5.15) Wj(z) = Zj + (higher powers), j = 1, • • • , k. 

Now assume that our domain D is such that for D these k functions 
have the special form 

(5.16) Wj(z) s ZJ, j = 1, • • • , k. 
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Transcribe them by (5.8) onto Df. Being invariants they go over into 

(5.17) wj (z') = Zj(z{t • • • , Zk) = z'i + (higher powers). 

Hence they cannot have the specialized form (5.16) in the domain D' 
unless the transformation (5.8) is the identity Zj^zj. In other words 
the specialized form (5.16) cannot occur for more than one domain D 
in a class of equivalent domains and thus the specialized form (5.16) 
singles out the domain D from all other domains D' which are equiva­
lent to D under a 1-1 analytic mapping which preserves the origin. 
This specialized domain is called the representative of its class by 
Bergman. 

Now let K be a class of equivalent domains and assume that the 
class has a representative domain R. Then each domain D of K can 
be mapped onto R in a 1-1 manner by a normalized mapping. Denote 
this mapping by 

(5.18) T: zj =*,(«) , zGD, 

and consider the mapping 

(5.19) S: zj = w?(s) 

where the w%(z) are the invariant quotients for D. We do not assume 
that S is 1-1. But by the invariance we know that 

(5.20) w° [gT\z'), • • • , gl\z') ] m w* («0, 

and since R is representative 

wy(s') s *ƒ, j = 1, • • • , k. 

Hence 

(5.21) w?k7V),"-,**V)]-«/. 
that is 

(5.22) w?(«) ES «/(*). 

Thus S gives a 1-1 normalized mapping of D onto R. 
This yields a very beautiful result due to Bergman. 

THEOREM 8 (BERGMAN). Let K be a class of equivalent domains, 
equivalent with respect to 1-1 normalized analytic mappings. For DÇLK 
let 

(5.23) f0(z) = 1 + (higher powers), 
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(5.24) fj (z) = s,- + (higher powers), j = 1, • • • , k, 

be the £ + 1 (unique) minimal f unctions f or D and define 

(5.25) w*(z) « fï(z)/f?(z), j - 1, • • • , k. 

There exists at most one domain R of K for which the functions wf(z) 
have the specialized form 

Wj(z) s %u j = 1, . . . , k. 

If there is actually such a domain R then every domain D of K can be 
mapped onto Rby a 1-1 normalized analytic mapping, and the mapping 
which does this is given by 

(5.26) z\ = wDi(z), j = 1, • • • , k\ z G D. 

It can easily be seen that there is a representative domain if for at 
least one domain D of K the mapping 

Z] = Wi(z) 
is 1-1. 

Bergman has observed that every bounded proper circular domain 
A is a representative domain. To see this write the minimal function 
fo(z) for a bounded proper circular domain A in the form 

(5.27) f0(z) = 1 + Px(z) + P,(«) + • • • , 

where Pn(z) is a homogeneous polynominal of degree n. Then 

(5.28) U(z^, • • • , zke
i6) = 1 + c"Pi(z) + e™P2(z) + • • • . 

Now the volume element do)z is invariant under the circular transfor­
mation 

Zj > ^ Zje . 

Hence the function (5.28) has the same norm as (5.27). Hence both 
are minimal. But since the development of each starts with 1 and 
since the minimal functions are unique, (5.27) and (5.28) must be 
identical. Thus 

Pn(z) = 0, n = 1, 2, 3, - • • , 
and 

/o(«) - 1. 

In a similar manner we see that 
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ƒ,(*) = *h y = 1, • « • , £, 

and thus 
Wj{z) s Z,: 

This yields the desired result. 
Now suppose we have a bounded domain D which is equivalent to 

a bounded proper circular domain A. On applying Bergman's theo­
rem, Theorem 8, we have a procedure for mapping D onto A; we 
merely calculate the h+\ minimal functions 

/MOO, M = Q, 1, • • • , k, 

for D and map by 

*ƒ * / /W/ /oW, 7 = 1, • • • • * . 

By use of complex orthonormal functions Bergman [6] has simplified 
the calculation of the minimal functions. 

A second important consequence of this result has been derived by 
Bergman and Welke, namely the corollary of §2. 

Every origin preserving automorphism of a bounded circular domain 
T containing the origin is a homogeneous linear transformation. 

PROOF. Let 

T: Zi = aijZi + • • • + ahiz£ + • • • 

be an automorphism of A. It can be normalized by a homogeneous 
linear transformation L, and this homogeneous linear transformation 
carries A into a circular domain A'=LA. Now 

TL: Zj = zj + (higher powers), j = 1, • • • , k, 

is an automorphism of A'. Since A' is circular it is representative and 
hence the only 1-1 normalized automorphism of A' is the identity, 
that is TL = I or T=*L~l. Thus T is linear. 

6. Mappings of unbounded domains. In this section I want to give 
briefly and without proof a few results on mappings of unbounded 
domains. First we shall recall Cartan's theorem, Theorem 1, which 
states that if we have an inner (analytic) mapping T of a domain D 
containing the origin onto a bounded domain D', and if the linear 
part of T is the identity, then T is actually the identity. 

This theorem does not hold if D' is unbounded. In fact, Bieberbach 
[9], using a result of Fatou [15, 16], has shown that there exist two 
entire functions z'= z+(higher powers), w's=*w+(higher powers), 
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which map the entire space E4 onto a proper subset of £4 in a topo­
logical manner. Thus they define an inner mapping whose linear part 
is the identity and yet the mapping is not the identity. 

In spite of this Behnke and Peschl [3 ] have been able to prove a 
very beautiful generalization of Cartan's theorem for certain un­
bounded domains. 

THEOREM 9 (BEHNKE AND PESCHL). Let D be a domain containing 
the origin and let D have the following property : There exist k bounded 
analytic functions 

(6.1) g,oo = £ p»(«), y = i, •••,*, 

in D such that the determinant 

(6.2) J{z) = d(plv • • • , P**)AK*i, ••• ,**) 

is not identically zero. Then every inner analytic mapping of D whose 
linear part is the identity is actually the identity. 

The development (6.1) is the development of gj{z) in a series of 
homogeneous polynomials; there is no restriction on the value of the 
lowest degree n^. 

Using the result of Behnke and Peschl, Bochrter and the speaker 
[lO] have carried over part of the results of §3 to a class of unbounded 
domains. Their result is: If D is not bounded but possesses the alter­
native property indicated in Theorem 9, if T is an inner mapping of D 
with the origin as a fixed point, if (3.4) holds, and if the linear parts 
{LT, LT2, LT3, • • • } are uniformly bounded in D, then T is an auto­
morphism. 

7. Concluding remarks. The field of analytic mappings is wide and 
contains numerous results. It has been impossible to give or even to 
summarize all of these results; as a consequence many interesting and 
important results have been omitted. Many of these will be found in 
the résumé of mapping contained in chapter 7 of the tract by Behnke 
and Thullen [4]. Several are given in the book by Bergman [6]. 
I would like to refer the listener to these two books for excellent 
treatments of various aspects of the theory. 

Among the more recent papers on mapping I would like to mention 
two by Bergman and Spencer [7, 8] which have appeared since the 
publication of the books just mentioned. These papers point in a 
somewhat different direction from those considered in this talk, and 
they contain references to other recent treatments. 
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