
SOME IMBEDDING THEOREMS AND CHARACTERIZATION 
PROBLEMS OF DISTANCE GEOMETRY 

L. M. BLUMENTHAL 

Introduction. The systematic development of abstract distance 
geometry was initiated by Menger's Untersuchungen [óJ1 of 1928. 
The field opened up by these pioneering papers has been extensively 
cultivated during the past fourteen years with the result that not 
only have the boundaries of the subject been extended far beyond 
what was envisaged a decade and a half ago, but the territory gained 
has been regained and consolidated by new methods that attain their 
objectives more easily. I t is the purpose of this paper to present some 
of these consolidations (Part I) and extensions (Part II)—at hand 
or in progress—and to point out a few promising regions for future 
exploration. 

PART I 

1. Preliminary definitions. A distance space, in its most general 
aspects, arises upon associating with each ordered pair p, q of ele­
ments of a "point" set an element pq of a "distance" set, the associa­
tion being conditioned only by certain very simple rules. If, in par­
ticular, the distance set is the set of non-negative real numbers, 
pq = qp, while pq = 0 if and only if p = q, one obtains the class { S} of 
semimetric spaces. A semimetric space is metric provided that for each 
three of its points p, q, r the triangle inequality pq+qr^pr is satisfied. 

We shall have frequent occasion to consider the determinant 
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formed for k points pi, p2, • • • , pk of a semimetric space. With its 
use the triangle inequality takes the symmetric form D(p, q, r) ^ 0 . 

Two distance spaces (or subsets of the same distance space) are 
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called congruent or isometric provided there exists a one-to-one, dis­
tance-preserving correspondence between their points, and a distance 
geometry studies those properties of a distance space which are invari­
ant under the group of congruences. 

2. Problems for euclidean subsets and spaces. It is observed that 
a semimetric space of m elements p\, p2, • • • , pm is given by a matrix 
(pipj) of non-negative real numbers—the mutual distances of the m 
points—which, in general, is subject only to the requirements of be­
ing symmetric and having zeros along the principal diagonal. It is 
clear that if such a distance matrix be formed for m points of a par­
ticular space (for example, euclidean) there is a marked decrease in 
the freedom with which the elements of the matrix may be selected. 
The distinctive character of the space is reflected in the structure (the 
inner relations) of this matrix, and it is natural to seek to classify and 
study distance spaces in terms of this structure.2 The first problems 
to which these considerations gave rise were the following ones. 

T H E EUCLIDEAN SUBSET PROBLEM. What is the structure of the dis­
tance matrix of a finite semimetric space which is necessary and sufficient 
to insure the euclidean character of the metric} On what finite subsets 
{if any) of an arbitrary semimetric 2 is it necessary and sufficient to im­
pose this matrix structure in order that 2 may be congruently contained 
in a euclidean space of a given dimension!* 

T H E EUCLIDEAN SPACE PROBLEM. Let 2 be any semimetric space. 
What are necessary and sufficient {metric) conditions for congruence of 
2 with a euclidean space of given dimension ? 

The first solutions of both of these problems were given by Men­
ger [6]. 

It is important to observe that the subset problem is the more gen­
eral one. Of the many solutions that have been given for the space 
problem few advance the solution of the problem of congruent im­
bedding. This seems due to the fact that in characterizing a space one 

2 There are many ways in which this structure may be described. As seen later, 
one may base the description upon (1) the signs of principal minors of D(pif • • • , pm) 
(Menger), (2) the character of the quadratic form with determinant D (Morse), 
(3) the character of the quadratic form {l/2^™{pj?i+p1p

%
j--pip

2^xixj (Schoenberg), 
(4) the behavior of the family of functions exp( — \t2)} X positive, defined over the 
space of m elements (E. H. Moore, Schoenberg), and so on. It would be useful to add 
to these means of interpreting the structure. 

3 It should be mentioned that this formulation of the euclidean subset problem is 
quite different from the original one. 
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imposes from the outset certain obvious necessary conditions that 
profoundly affect the type of theorem obtained. So far as imbeddabil-
ity is concerned, such theorems give only stringent sufficient con­
ditions. 

Thus Busemann has shown that a convex, externally convex, 
finitely compact metric space is congruent to a euclidean or hyper­
bolic space provided the locus of points with equal distances from two 
distinct points contains with each distinct pair of its points each 
straight line through them.4 This interesting result is, however, of 
little use in determining if an arbitrary semimetric space is congru-
ently contained in a euclidean or hyperbolic space. 

On the other hand, a solution of the euclidean subset problem does 
advance the solution of the space problem, for if subsets of En are 
characterized metrically a characterization of En itself is obtained by 
adjoining properties that distinguish En among its subsets. This is a 
euclidean rather than an abstract space problem. It should be men­
tioned that a characterization of the En by way of the subset problem 
is quite likely to contain redundancies in the hypotheses, for it may 
happen that some of the requirements which are essential for the im­
bedding of arbitrary semimetric spaces in En might be dispensed 
with in the light of those adjoined conditions individualizing the En 

among its subsets. We shall see an illustration of this later. 
Before turning to the solutions of the two problems posed above, 

we state here the general characterization problem. 

GENERAL CHARACTERIZATION PROBLEM. Let {A} be a given class of 
distance spaces and {A*} a given subclass of {A}. The subclass {A*} 
is characterized metrically with respect to the class {A} when metric 
conditions are obtained which are necessary and sufficient to insure that 
any space of {A} satisfying them be congruent with a member of {A*}. 

The problem of isometric or congruent imbedding consists in de­
termining whether a given space A be congruently contained in a 
given space A* (that is, congruent with a subset of A*). The congru­
ence of the spaces L(2) and Z(2) (1907), the isometric imbedding in 
Urysohn's space U (or the space C of continuous functions on (0, 1)) 
of each separable metric space are examples. 

3. Solution of euclidean subset and space problems. The problem 
of congruent imbedding of 2 in En is reduced to a "finite" one by 

4 For definitions of convexity, external convexity, and so on, see the writer's Dis-
tance geometries, University of Missouri Studies, vol. 13 (1938), which presents a 
survey of the development of abstract metrics. 
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showing that any semimetric space is congruently contained in En 

whenever each n + 3 of its points are. This is described by saying that 
the En has congruence order n + 3 with respect to the class of semi-
metric spaces. In the following we give the imbedding theorems with 
weaker hypotheses than those originally imposed.5 

The congruence order n+3 property of the En is a consequence of 
the following easily proved theorem : 

THEOREM 3.1. A semimetric S is congruently contained in En if and 
only if there exists an integer r, r^n, such that (1) 2 contains r+1 
points congruently imbeddable in Er, not in Er~\, and (2) each ( r+3) -
tuple of 2 containing this (r+1)-tuple is imbeddable in Er. Then 2 is 
congruently contained in Er, not in E r_i. 

This theorem differs principally from Menger's congruence order 
theorem by not assuming that all (r+3)-tuples are imbeddable in Er, 
but only those that contain a selected set of r+1 points. It thus per­
mits the presence of free (r+3)-tuples; that is, sets of r+3 points 
which are not assumed imbeddable in Er. We shall meet with other 
instances of this kind of freedom later. Further, the proof of the 
property as formulated above dispenses with a separation into cases 
and an induction which feature Menger's proof. 

Thé euclidean subset problem is then solved when conditions for 
(1) the imbedding of r+1 points in Er, not in E r - i , and (2) the im­
bedding in Er of (r+3)-tuples containing such a set of r + 1 points 
are obtained. Concerning (1) we have this statement: 

THEOREM 3.2. A semimetric (r+l)-tuple pu p2, • • • , pr+i is im­
beddable in Er, not in Er-i, if and only if 

sgn D(pu p2, • • • , pk+1) = ( - 1) w-i, k = 1, 2, • • • , r. 

This theorem was originally proved by Menger under the heavier 
assumptions that for each integer k (2 ^k ^ r + 1 ) and for each set of 
k of the r+1 points, sgn D(piv piv • • • , pik) = ( — l)k. Menger later 
observed that as a consequence of a remark of M. Morse it suffices to 
require merely the non-vanishing of the determinants of every k-
tuple (2Sktkr+l) of the points and sgn D(pi, pi, • • • , pk+i) 
= ( — l)k+1(k = l,2,--',r) [5], I t turns out, however, that even 
the non-vanishing of these determinants need not be assumed.6 

6 In a recent seminar course, the writer has completely revised Menger's treatment 
of the euclidean problems and obtained simpler proofs and stronger theorems. This 
applies particularly to the difficult matter of quasi-congruence order. 

6 This is implied also by Schoenberg's quadratic form criterion, but we shall use 
these results to obtain Schoenberg's theorem. 
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COROLLARY. If pi, p2, • • • , pr (ire congruently contained in £ r_i, 
not in Er„2, then the semimetric (r+l)-tuple pi, pi, • • • , pr, pT+\ is 
imbeddable in Er, not in Er-i, if and only if sgn D(pi, p2, • • • , pr, pr+i) 

It is of interest that the inequality demanded of the determinant 
D of the r+1 points is strong enough to force the selection of the r 
distances of pr+i from the remaining r points so that the r-tuples 
pi, • • • , pi_i, pi+i, • • • , pr, pr+i (i = l, 2, • • • , r) are euclidean. 
Turning to the imbedding of r + 3 points, we have this theorem. 

THEOREM 3.3. If pi, • • • , pr+i are imbeddable in Er, not in Er-i, 
then the semimetric (r+3)-tuple pi, • • • , pt+u pr+2, pr+z is imbeddable 
in Er if and only if 

D(pu • • • , pr+1, pr+2) = D(pi, • • • , pr+u pr+z) 

= D(pi, ' ' ' , pr+l, pr+2, pr+z) = 0. 

The proof of this theorem follows familiar lines when it is estab­
lished that pi, p2, • - • , pr+u Pr+2 and pi, p2, • • • , pT+u pr+z are im­
beddable in Er, not in Er~i. This is done in a lemma, and the euclidean 
subset problem is completely solved.7 

By despoiling D(p0, pi, • • • , pk) of its bordering, we have 

D(po,pu • • • , # * ) = ( - l )* + 1 -2* |^ , y | , i,j = 1,2, • • • , *, 

where £»•,•= (1/2) (pop2i+poP* —pip))- I t follows at once from the pre­
ceding theorems that a semimetric (w + l)-tuple p0, Pu • • • , pn is 
imbeddable in En if and only if there exists an integer r, r^n, such 
that for r + 1 of the n+1 points, say p0t pi, • • • , pr, \pa\ > 0 
(i,j = l, 2, - • • , k; k^r) while in case r<n, all ( r + l ) s t and (r+2)d 
order determinants |^,-/| containing \p%j\ (i,j = l, 2, • • • , r) vanish. 
TTzese are precisely the conditions that the quadratic form ^Ij-iPuXiX,-
be positive definite of rank r, and we have the theorem of Schoenberg [ l0] . 
It is easy to see that this condition is equivalent to the form 
Ylij=o(Pip3)2xixi being negatively definite of rank r on the hyperplane 
x0+Xi + • • * +xn = 0, and this form of the condition has proved to 
be very useful. 

Turning again to the congruence order n + 3 property of the En, it 

7 We see tha t if pi, • • • , pr are imbeddable in Er-1, not in jEr-2, then the semi-
metric ( r -H)- tuple plf • • ' , pr, pr+i is imbeddable in Er if and only if the sign of their 
determinant D is not ( — l ) r . An example shows this is no longer valid if the restriction 
that the r points be not imbeddable in Er-2 is dropped; for if pq — qr — ps^\, pr — 2, 
qs~3f rs — (19)1/2, the triple p, q, r is imbeddable in E 2 and D(p, q, r, s) —0, but the 
four points are not congruently contained in a euclidean space. 
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is natural to inquire into the conditions that permit a reduction in 
the number n + 3. That this number is in general the smallest integer 
k for which the imbedding of each &-tuple of a semimetric space im­
plies the imbedding of the whole space in En follows, as Menger has 
shown, from the existence for each integer n of semimetric spaces of 
n + 3 points which are not imbeddable in En though each (w + 2)-tuple 
is. 

The construction of these so-called pseudo-£n (n + 3)-tuples is 
readily described, but only in the case of pseudo-linear quadruples 
(n = 1) have distance relations characterizing such sets been obtained. 
These quadruples have the form pq = rs=a>0> qr=ps—b>0, 
pr = qs~a+b, and D(p, q, r, s) = —32 (product of the six distances). 
It would be of interest to rind the value of D for a pseudo-£n (n + 3)-
tuple. So far it has been shown only that its sign is ( — l) n . 

It follows from the preceding remark that pseudo-Ew sets of n + 3 
points are not imbeddable in any euclidean (or Hubert) space. 
Pseudo-linear quadruples are clearly imbeddable in a (convex) circle, 
but pseudo-planar quintuples are not imbeddable, so far as is known, 
in any singularity-free surface.8 Recently spaces were constructed by 
Pepper which contain congruently all pseudo-£w (n + 3)-tuples [7]. 
They are obtained by appropriately metrizing the union of two n-
spaces "joined" along a simplex. For n = 2 a simpler kind of space 
suffices. This is obtained by metrizing convexly the set consisting of 
the union of three half-planes with a common axis. 

What of pseudo-£n sets of more than n + 3 points? The most com­
plicated part of the Zweite Untersuchung is devoted to showing that no 
such sets exist; that is, if a semimetric space has more than n + 3 points 
it is imbeddable in En whenever each n + 2 of its points has this property. 
This is described by saying that the En has quasi-congruence order 
n + 2 with respect to the class of semimetric spaces. We shall return 
to this matter later. 

Having solved the euclidean subset problem, the characterization 
of the whole En is obtained by adjoining properties distinguishing it 
from its subsets. This yielded the following theorem. 

THEOREM 3.4. A semimetric space 2 is congruent to En if and only 
if 2 is complete, convex, externally convex, has each n + 2 of its points 
imbeddable in En and at least one (n+l)-tuple not imbeddable in En-.\. 

With this the principal objectives of the Zweite Untersuchung are 
attained. The reader is referred to Distance geometries for a discussion 

8 The convex circle is the circle (circumference) with shorter arc metric. 
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of the results of W. A. Wilson who, attacking the space problem 
directly, obtained a characterization theorem in terms of the imbed­
ding of quadruples instead of (w + 2)-tuples, as well as for the work 
of Aronszajn bearing upon the space problem.9 By weakening Wil­
son's four-point property to require merely that each quadruple con­
taining a linear triple be imbeddable {weak four-point property) the 
writer allowed the existence of free quadruples. Very recently B. E. 
Gillam characterized the Ez by showing that a complete, convex, 
externally convex metric space with the weak four-point property, 
which contains at least one quadruple with non-vanishing deter­
minant D, while D vanishes for each five points of the space, is 
logically equivalent to £ 3 [4]. This was accomplished by proving all of 
Hubert 's postulates for £ 3 on the basis of the above assumptions, 
with lines, planes, betweenness and congruence appropriately de­
fined. 

PART II 

Foreword. As indicated in the introduction, this part of the paper 
is primarily concerned with extensions rather than consolidations. I 
propose to take up some recently established imbedding and char­
acterization theorems, along with pertinent notions and concepts, and 
to raise certain questions suggested by them. No attempt is made to 
catalogue all of the new results; on the contrary, I limit myself to the 
discussion of the very few with which I have been connected. 

1. Concerning quasi-congruence order and free m-tuples. We have 
seen that one of the important metric properties of the En is its pos­
session of quasi-congruence order n + 2 with respect to semimetric 
spaces; that is, any semimetric space of more than n + 3 distinct 
points is congruently contained in the En whenever each n-\-2 of its 
points are. Several kinds of inquiries are suggested by this interesting 
concept. 

(I). I t has been observed in Part I that the requirement featuring 
the notion of congruence order n + 3 (namely, that each (n + 3)-tuple 
be imbeddable in En) has been weakened by allowing the presence of 
free (n + 3)-tuples (that is, (w+3)-tuples which are not assumed con­
gruently imbeddable in En) and the question arises whether a similar 
kind of weakening might be allowable here. Is the imbedding still 
valid if a certain number of the (« + 2)-tuples are free? If so, how 
many of the (w + 2)-tuples might be taken as free? 

9 It should be noted, however, tha t Wilson's work is not entirely independent of 
the subset problem for it utilizes Menger's theorem on the imbedding of « + 1 points 
in E n . 
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In answering these questions it is first of all clear that it does not 
suffice to require merely that each (n + 2) -tuple containing a selected 
set of n+1 independent points be imbeddable in En—a type of weak­
ening immediately suggested by what proved to be effective in the 
case of congruence order. If n = l, for example, this demands only 
that every triple containing a given pair of distinct points be linear 
(that is, imbeddable in E\). That the linearity of a space does not fol­
low from this demand is seen by considering the convex circle, which 
is not imbeddable in the Ei though each of its triples containing a 
given pair of diametral points is linear. There is, however, an analogue 
of the previous type of weakening. It is given in the following the­
orem. 

THEOREM 1.1. Let 2 be a semimetric space of at least n+4 distinct 
points. 2 is congruently contained in the En, not the £ n - i , if and only if 
(a) X contains a set S of n+2 distinct points of which at least one (n+1)-
tuple is not imbeddable in En-i, and (b) each n+2 points of 2 with at 
least n points in common with S is imbeddable in En. 

PROOF. Let pi, pi, • • • , pn+u Pn+2 denote the points of S, with the 
first n+1 not imbeddable in E n - i . Using (b) it follows that these 
n + 1 points are imbeddable in En. If, now, pi, p2, • • • , £w+i, T, s is 
any (w + 3)-tuple of distinct points containing the independent n+1 
points, consider the n+4 points formed by annexing the point pn+2-
(The case where either r or s is pn+2 causes no difficulty.) By (b) each 
n+2 of these n+4 points is congruently contained in En, and hence, 
by the quasi-congruence order n+2 property of En, the n + 4 points 
are imbeddable in En. Thus each (w + 3)-tuple containing the inde­
pendent (w-fl)-tuple pi, p2, - - • , pn+i is imbeddable in En and it 
follows that the whole space is congruently contained in En. 

An example shows that this theorem is no longer valid if the as­
sumption that at least one (n+l ) - tup le of S be not imbeddable in 
jEn_i is not made, suppressing at the same time, of course, the re­
quirement that 2 be not imbeddable in En-i- Let pi, p2, pz, form a 
plane equilateral triple and label the in-center p± and £5. The semi-
metric space 2 whose points are pz, p±, p$ together with the points of 
the straight line joining pi and p2, with all distances euclidean except 
the distance pips, which is defined to be the radius of the circumcircle 
of pi, p2y p3y contains a subset 5 of four distinct points (pi, p2, x, y, 
where x, y are any two points of the line other than pi, P2) such that 
every four points of 2 with at least two points in common with 5 are 
imbeddable in the plane £2. But the space S is obviously not imbed­
dable in £2. 
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A more striking way of lifting the demand that every (n + 2)~ 
tuple be imbeddable in En is given by the following theorems. 

THEOREM 1.2. Let 2 be semimetric with at least n+k+4 distinct 
points. Then 2 is imbeddable in En if and only if 2 contains at most k 
free (n + 2)-tuples. 

PROOF. We shall show that each (w + 2)-tuple of 2 is congruently 
contained in En. 

Let, then, pi, p2, • • • , pn+2 be a free (w + 2)-tuple. Since there are 
at most k free (n+2) -tuples and at least n+k+4 points in 2 it is 
readily seen that this (n + 2)-tuple is contained in an (n + 5)-tuple 
which has this (n + 2)-tuple as its only free set of n + 2 points. If 
pi, - - • , pn+h is such an (w+5)-tuple, each of the three sets of n+4: 
of these points obtained by omitting pn, pn+i, pn+2 in turn have 
all (n + 2)-tuples imbeddable in En, and hence the three (w+4)-
tuples are themselves imbeddable in En. I t follows that the rank 
of the determinant D of the n + 5 points is at most n + 2, and so 
D(PU p2, • • • , Pn, Pn+ly pn+2)=0. 

Now each n+\ points of 2 are imbeddable in En, for each (n+1)-
tuple is contained in at least k + 3 (n + 2) -tuples and not all of these 
are free since, by hypothesis, S contains at most k free (n + 2)-tuples. 
Thus, each n+\ of the points pi, pi, • • • , pn+2 is imbeddable in En. 
Since the determinant D of these n + 2 points is zero, it follows that 
the points are imbeddable in En, and the theorem is proved. 

The same kind of argument yields the next theorem. 

THEOREM 1.3. Let S be semimetric with power exceeding fc$0. Then 
S is congruently contained in En if and only if S has at most fcio f Tee 
(n + 2)-tuples. 

(II) . The literature contains only two proofs of the quasi-congru-
ence order n + 2 property of the En, both of which are quite lengthy. 
A direct elementary proof is desired. Since the property is easily 
formulated in terms of determinant or quadratic form theory, at­
tempts have been made to establish the result purely algebraically. 
For n — \, not a trivial case, a very simple proof has been found by 
the writer, but in general such efforts have so far not been effective. 
Since the complex space K% does not have quasi-congruence order 4 
with respect to the class of complex distance spaces, a proof of the 
property for the En must depend upon the reality of the field from 
which the distance elements are selected and hence is likely to be 
difficult. On the other hand, the writer has used algebraic methods to 
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materially shorten the two earlier proofs. The question is, it seems, 
still open. 

(III) . It would be highly desirable to axiomatize the notion of 
quasi-congruence order or at least to express it in terms of more ele­
mentary properties of the space. A start in this- direction has been 
made by C. V. Robinson and the writer by showing that for complete, 
convex, externally convex metric spaces quasi-congruence order three 
{with respect to the class of semimetric spaces) is equivalent to the absence 
of equilateral triples of distinct points. This was done by establishing 
the following very simple metric characterization of the line [3]. 

THEOREM 1.4. A complete, convex, externally convex metric space, 
with at least two points, is a straight line if and only if it does not contain 
an equilateral triple of distinct points. 

This theorem has as immediate corollaries characterizations of the 
line due to Lindenbaum and to Menger. 

More recently the writer showed that a line segment is characterized 
among all compact and convex metric spaces by the absence of equilateral 
triples. 

Quasi-congruence order n + 2 readily implies the absence of equi­
lateral (w + 2)-tuples, but not conversely. The half-line, for example, 
has neither equilateral triples nor quasi-congruence order three, and 
the K% has neither equilateral quadruples (with nonzero side) nor 
quasi-congruence order 4. What is a large class of spaces for which the 
two notions are logically equivalent} 

In this connection, I would like to raise the question of interpreting 
topologically the absence of equilateral ^-tuples. Biedermann has 
shown that a connected metric space in which each triple is linear 
(that is, a space strongly without equilateral triples) is homeo-
morphic with a line, a ray, or a segment. It was in fact this result 
that motivated Menger's characterization of euclidean subsets. 
(Menger showed that the homeomorphism of Biedermann is actually 
a congruence.) 

If, now, one supposes merely that a connected metric space is 
without equilateral triples, what topological properties of the space 
ensue ? Is a metric Peano continuum without equilateral triples an arc ? 
If this is indeed the case (and I conjecture that it is) a topological 
property is given an elegant metric characterization.10 Such probk ms 
are part of a general program which seeks to determine what topologi-

10 The writer has now established this conjecture. See New characterizations of seg­
ments and arcs, Proc. Nat. Acad. Sci. U. S. A. vol. 29 (1943) pp. 107-109. 
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cal properties a space must possess in order that it may be homeomorphic 
to a space with given metric properties. 

2. Congruence indices. Increasing study of characterization prob­
lems has yielded results that the concepts of congruence and quasi-
congruence orders are inadequate to describe. To meet this situation 
the notion of relative congruence indices was formulated [ l ] : 

Let r and T* be two given spaces and {A} a given class of spaces. The 
space r has T*-relative congruence indices (n, k) with respect to the class 
{A} provided any space A of the class with more than n+k distinct 
points is imbeddable in T whenever each n of its points (not necessarily 
distinct) is imbeddable inT*. 

The space T* is called T-catalytic of indices (n, k) with respect to 
{A} since it (in general) facilitates the desired reaction of imbedding 

A in r without participating in the result, for A is not necessarily im­
beddable in r*. If r = r * the indices (n, k) are called congruence in­
dices of r with respect to the class {A}. 

It is easy to see that congruence and quasi-congruence orders cor­
respond to congruence indices (&, 0) and (k, 1), respectively, and that 
if T has r*-relative congruence indices (n, k)y then Y has T*-relative 
indices (n', k') if n^n' and n+k^n''+k', the class of comparison 
spaces being fixed. We order these indices lexicographically, and call 
those indices (n, k) "best" which are not preceded by any indices 
(nf, kf). It is important to observe that this ordering is not that of 
logical implication, for with respect to the latter criterion the indices 
do not form an ordered set. Thus a two-dimensional spherical cap of 
radius less than wr/2 has, with respect to the class of all semimetric 
spaces, congruence indices (4, 2) and also indices (5, 0), but neither 
set logically implies the other. 

Keeping the comparison class of spaces fixed, let the best congru­
ence indices of a space V be (n, k), with (n', k') the best T*-relative 
congruence indices. The space T* is strongly or weakly catalytic ac­
cording as n'<n or n' = n, k'<k, respectively. In case the indices 
(»', k') are no better than (n, k), T* is formally catalytic, while if 
nf <n and k'<k, T* is perfectly catalytic. An open hemisphere of 
S2,r, for example, is a strongly catalytic space for 52,r, since by its 
use the best congruence indices (5, 0) of 52,r with respect to semi-
metric spaces are bettered by the hemisphere-relative congruence in­
dices (4, 2). In fact, it has been shown that the 5 n , r

n has T*-relative 
congruence indices (« + 2, n) with respect to all semimetric spaces, 

11 Sn,r denotes the* w-dimensional surface of a sphere of radius r in En+i, with 
geodesic (shorter great circle arc) metric. 
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where T* denotes an open (w-dimensional) hemisphere of the Sn,r. 
It is worth noting that pseudo-euclidean spaces fall under the no­

tion of catalytic spaces. Clearly every subset of a catalytic space is 
catalytic (with the same indices) but the interest lies in enlarging 
rather than depleting these spaces, and the problem of finding satu­
rated catalytic spaces of given indices arises. 

The writer recently proposed the problems of finding the best con­
gruence indices of the (closed) w-dimensional hemisphere and of small 
w-dimensional spherical caps with respect to (1) the class of semi-
metric spaces and (2) the set of all subsets of the containing Sn,r-
The second inquiry led to posing the following question : for what 
integer k does the intersection of each k members of a family of convex 
subsets of the n-dimensional spherical surface Sn,r imply the existence of 
a common point for the family! 

In his Missouri dissertation, C. V. Robinson investigated these 
problems [9]. He showed that the best congruence indices of the n-
dimensional hemisphere with respect to semimetric spaces are 
(2w-fl> 1). Even with respect to subsets of the containing Sn,r these 
indices cannot be bettered. I t follows that any subset S of Sn,r is 
coverable by a hemi-,Sn,r provided 5 contains more than 2n + 2 dis­
tinct points and each 2n-\-\ of its points is coverable by the hemi-

Of particular interest is the plane analogue of a cap theorem to the 
effect that a circular disc will cover a plane set P if and only if each 
three points of P are coverable by the disc. This behavior of the 
circular disc is all the more striking when contrasted with that of 
other convex subsets of the plane such as the square or elliptical disc. 
For neither of these figures does any such integer k exist; for example, 
for any integer k however large there are plane sets not coverable by 
a square (elliptical) disc even though each k points of the set are so 
coverable. The same is true for any portion of the plane bounded by 
a broken-line curve. The possession of indices (3, 0) with respect to 
subsets of the plane has been made the basis of a characterization of 
the circular disc [8]. 

THEOREM 2.1. The circular disc is the only connected, simply con­
nected domain {closure of a bounded open set) of the plane with congru­
ence indices (3, 0) with respect to plane sets. 

It would be highly desirable to make an exhaustive classification of 
plane sets according to their congruence indices with respect to sub­
sets of the plane. The problems involved seem quite difficult and only 
the beginnings of a systematic investigation have been made. With 
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respect to the class of linear subsets we have a partial enumeration 
of linear sets with fixed congruence orders (finite, hyperfinite, and 
transfinite).12 Investigations aimed at completing these results and 
developing a similar theory for plane subsets are now in progress. 

In this connection interest is attached to a new type of problem 
recently considered which I illustrate here for the simplest case. I t is 
easily seen that corresponding to each integer k there exists a bounded 
and closed subset of Ei with best (finite) congruence order exceeding 
k. Thus if P is an arbitrary bounded and closed linear set, one may 
not assert that any linear set Q is imbeddable in P whenever each k of 
its points are, even for k arbitrarily large. Note that, as is usual in 
imbedding theorems, the condition "every k points of Q are imbed­
dable in P" is a unilateral one. Suppose, on the other hand, it is also 
assumed that every k points of P are imbeddable in Q. Then one easily 
proves that P and Q are congruent when k = 4 ; that is, if P and Q are 
linear sets with P or Q bounded and closed, then P~Qif and only if each 
four points of P are imbeddable in Q and each four points of Q are imbed­
dable in P. This bilateral type of condition gives rise to several new 
problems and causes the notion of congruence order (based upon uni­
lateral conditions) to be viewed in a somewhat different light. 

In answering the question raised concerning intersections of convex 
subsets of Sn,r, the following theorems were obtained.13 

THEOREM 2.2. If each n+k + 2 members of a family of convex sub­
sets of the sphere Sr,r intersect, and if one member contains no Sk,r 
(O^k^ri), then there is a point common to all. 

THEOREM 2.3. A family of more than 2n+2 convex subsets of Sn,r has 
a common point if each 2n + l of them intersect. 

Additional theorems are obtained when the diameters of the con­
vex subsets are subject to certain restrictions. 

12 A space 2 has hyperfinite congruence order with respect to a class of spaces 
{A j if and only if each member of the class is imbeddable in 2 whenever each of its 
finite subsets are. Thus hyperfinite congruence order is intermediate between finite 
and transfinite congruence orders. Each self-compact linear set has hyperfinite con­
gruence order with respect to semimetric spaces; examples have been given of linear 
sets with hyperfinite and no finite congruence order, and transfinite but not hyper­
finite congruence order. The complement of a finite or denumerable linear set has best 
congruence order c (the power of the continuum). These notions were introduced in 
the Missouri dissertation of C. V. Robinson. 

13 A subset of Sn,r is convex provided it is a product of hemispheres. This definition 
rules out the whole Sn,r and includes a pair of diametral points. Thus from Theorem 
2.2 it follows tha t a family of convex subsets of Sn,r has a common point whenever 
each 2w+2 of them intersect. 
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Intersection theorems for convex subsets of En were obtained by 
Helly. Due to the variety of results such problems on the sphere 
turn out to be more interesting than their analogues in euclidean 
spaces. In contrast, for example, to the Helly theorem in £ 2 which 
states that any family of convex subsets has a non-empty product 
whenever each three members of the family intersect, it is found that 
a family of convex subsets of 52,r have a common point if each six 
have or (if the family has more than six members) if each five have, 
or (if one member of the family contains no diametral point-pairs) if 
each four have. If each of the convex subsets has spherical diameter 
less than 2irr/3 it suffices for each three of the sets to have a common 
point. It is clear how these results may be translated into "covering" 
theorems for spherical caps. 

3. ^-supplementation and elliptic space. If 2 is semimetric with 
finite diameter d, denote the set of unordered pairs of its elements by 
52, and let 52 = 5 i+52 , 5i • 52 = 0, be any decomposition of 52 into two 
mutually exclusive subsets. Corresponding to such a decomposition, 
a real, non-negative function F(x) is defined: 

F(x) = x, x = pq\ (p, q) G Su 

F(x) = ô - x, x = pq\ (p, q) G 52, 

where ô is a fixed real number not less than d. Transforming metri­
cally the space 2 by this function F yields a space which is in general 
not semimetric.14 Nor does it necessarily become semimetric upon 
identification of those points p, q (and only those) with pq* = F{pq) 
= 0, for such an identification is justified (keeping to a single-valued 
metric) if and only if for each element r of the space pr* = qr*. 

If, however, b>d, such an identification does convert the trans­
formed space into a semimetric one whose point set may, on account 
of the identification, differ from that of S. We denote such a space 
by 2* and refer to it as a ô-supplement of 2 (more precisely, the 
ô^-supplement of 2) . We write 2* = sups2 when there is no need to 
specify the function F. 

An important example of a ô-supplement is obtained by taking the 

14 A space F(2) which arises from 2 by replacing the metric pq of 2 by F(pq), 
where F is a real, single-valued, non-negative function defined for every x~pq, 
p, qE S, is called the metric transform of 2 by F. A study of metric transforms was 
begun by the writer in 1934 (Ergebnisse eines der Mathematischen Kolloquiums, Wien, 
no. 7, pp. 8-10). Metric transforms of euclidean spaces into subsets of Hubert space 
have been extensively investigated by Schoenberg and von Neumann (1938, 1942). 
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^-dimensional convex spherical surface Sn,r as 2, and transforming it 
metrically by the function F. 

F(x) = x, x = pq; pq S vr/2, 

F(x) = irr — x, x — pq; pq > irr/2. 

(Here 8=d.) The resulting semimetric space is the n-dimensional el­
liptic space £w,r with space constant r. 

In work still in progress, the notion of ô-supplementation is made 
the basis for characterizing subsets of £n , r among all semimetric 
spaces [2]. Elliptic space differs profoundly (both metrically and 
topologically) from all spaces heretofore treated and these differences 
make the older methods either inapplicable or extremely tedious. 
Fundamental in our work is the following theorem. 

THEOREM 3.1. A semimetric 2 is congruently contained in £w,r if 
and only if (i) no distance in 2 exceeds irr/2 and (ii) there exists at least 
one function F such that the ÔF-supplement of 2 is imbeddable congru-
ently in Sn,r, where ö=irr. 

PROOF. Let 2 be congruently contained in £n, r. Then evidently 
pq^Tr/2 for each pair p, q of elements of 2 . Denoting the metric 
transform of Sn>r by the function F defined in (f) by sup^Sr,,*-, we 
have £w,r = sup7rr5

,n,r. Evidently 

subset £n,r = subset(sup„.r 5n,r) = sup7rr(subset 5»,r), 

and hence there exists a sup(subset £Wfr) which is a subset of Sn,v 
Since, now, S is congruently contained in £w,r, there is a subset of 
£w,r congruent with 2 , and, by the above, a supplement of this sub­
set is a subset of 5„,r. Thus, a supplement of 2) is imbeddable in Sn,r 

and the necessity is proved. 
On the other hand suppose that S is semimetric with distances not 

exceeding wr/2 and that some 7rr-supplement of 2 is congruently con­
tained in S„,r- Denote any such supplement by sup 2 . Then there 
exists a subset Sn,r of Sn,r such that sup 2 is congruent with 5n,r. Now 
sup7rr5n,r = subset £n , r and hence s u p ^ s u p 2) is congruently con­
tained in £„>r. 

The proof is complete when it is shown that for every sup 2, 
supx, (sup 2) is ideatical with 2 . To this end, denote distances in sup 2 
by d(p, q) and in s u p ^ s u p 2) by dvr(p, q). The same argument shows 
that the two pointsets and the two distance-sets are identical, for 
let p=q in 2 . Then pq = 0. If d(p, q)=0, then d„(p, s ) = 0 , while if 
d(P, q)=7rrf then dvr(p, ö )=0 . Hence p—q in 2 implies p — q in 
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supTr(sup 2) . Finally, if p and q are distinct points of 2 , then 0<pq 
^irr/2. If d(p, q) =pq then, since pq^wr/2, dvr(p, q) =pq>0; while 
if d(p, q)=wr—pq^wr/2, then drr(p, q)=irr — (Trr--pq)=pq>0, and 
the theorem is proved. 

By virtue of this theorem, imbedding in 6n , r is referred to imbed­
ding ^-supplements of semimetric spaces in Sn,r. In any such supple­
ment the distance pq of two points of 2 is either unchanged or re­
placed by irr — pq, and hence cos (d(p, q)/r) differs from cos (pq/r) at 
most in sign. Applying known imbedding theorems for the Sn,r we 
have the following theorem. 

THEOREM 3.2. A semimetric m-tuple pu p2, • • • , pm is imbeddable 
in £>n,tif and only if (i) 0<pipj^irr/2 (i, j=l, 2, • • • , m\ i^j) and 
(ii) there exists an m-rowed symmetric square matrix € = (€»,•), €»•,• = ± 1, 
€u = l (i,i=l, 2, • • • , m) such that the determinant |e// cos {pipjr)\ 
(i} j = 1, 2, • • • , m) has rank not exceeding w + 1, with all nonvanishing 
principal minors positive. 

A determinant (symmetric) satisfying the condition (ii) of the 
theorem is said to have positive e-rank not exceeding n + 1. 

Now it is easy to show that each separable semimetric space is con-
gruently contained in £n , r whenever each of its finite subsets has this 
property, and hence we have obtained necessary and sufficient condi­
tions for the imbedding of any separable semimetric space in a given 
w-dimensional elliptic space. I t is desirable, however, to establish 
reduction theorems which express the imbedding in terms of the con­
gruent mapping of subsets of a fixed number of points. Such theorems 
hinge upon the following query. 

QUERY. What is the smallest integer k such that the determinant 
|cos (pipi/r)\ (i, i = l, 2, • • • , m) has positive e-rank not exceeding 
n+1 whenever each of its principal minors of order k has positive 
e-rank not exceeding n + 1 ? 

I t is conjectured that k — n+3, but so far this has been proved only 
for n = l.n Thus any separable semimetric space is imbeddable in 
£i , r if and only if each four of its points have this property. This can 
be established in other ways, and without the hypothesis of separabil­
ity. But for n> 1, the algebraic method discussed here appears to be 
the only feasible approach. The above conjecture means (if verified) 

Examples show that k is not less than « + 3 . 
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that £>n,r has (like euclidean, hyperbolic and spherical spaces of n-
dimensions) congruence order n + 3. I t would be interesting if the 
different topological properties of £n , r would be made manifest by a 
difference in the congruence order. 

4. Concluding remarks. In conclusion it should be observed that 
this paper has been concerned with completely global imbeddings and 
characterizations though interesting results in which local properties 
are assumed have also been obtained. A completely local type of the­
orem is one characterizing the line segment among all arcs of a metric 
ptolemaic space by the vanishing of the metrically defined Menger 
curvature at each point, while Gauss surfaces have been characterized 
among all compact and convex metric spaces by the existence at each 
point of a metrically defined surface curvature. A different ("mixed") 
type of imbedding theorem is expressed in terms of the local property 
of imbedding neighborhoods in En together with the global condition 
that each n + 3 points be congruently contained in some euclidean 
space. 

I t has not been possible to present here any of the applications 
of metric imbedding theorems to other domains. Metric methods have 
already been successfully applied to many parts of analysis and alge­
bra as well as to geometry, and there is reason to believe that con­
tinued cultivation of this field will abundantly increase both the num­
ber and the importance of these applications. 
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