
DOUBLE COSET MATRICES AND GROUP CHARACTERS 

J. S. FRAME 

1. Introduction. The principal theorem of this paper extends to 
the characters of the irreducible representations of an intransitive 
group a theorem proved in an earlier paper by the author1 for the 
degrees of the irreducible representations of a transitive group. A 
by-product of the development is the theorem that the sum of the 
traces of the permutations of any subgroup of a permutation group 
is not less than the corresponding sum for one of its cosets. 

Every finite permutation group G, of order g and degree n, can be 
written as a group of permutation matrices. The nXn matrix R(y) 
which corresponds to the element 7 of G can be written as a direct 
sum of submatrices R*(y) of nl dimensions corresponding to the n1 

symbols of a transitive constituent C% of G.2 Associated with such 
a transitive constituent Cl is a class of conjugate subgroups, 
H\^(^^)~1Hiyt

T, each of order h\ of which Hl shall be the subgroup 
leaving fixed the first symbol of C\ and H*r the subgroup leaving 
fixed the r th symbol. If ya is any element of G, then in the set of 
h9hl group elements i J 8 7 a ü ' , each element will appear ht times, 
where h% is the order of the cross-cut of the subgroups H„=y~1Hsya 

and H*. 
Counting each element of the set just once, we define the double 

coset H% by the formula 

(1.1) HÏ-tffJl'/h*. 

Any element from a double coset can be chosen as the defining ele­
ment ya. The inverses of the elements of a double coset H% them­
selves form a double coset which we call the inverse double coset 
and denote by H%. The product of two double cosets is a linear com­
bination of double cosets. By considering H% as a sum of hr/h" left 
cosets of H\ and Hp as a sum of W/hp right cosets of H\ and noting 
that H8H8 = h9H8

f it is apparent that each element in the product 
HrJHp> occurs a multiple of h8 times. We define the positive integers 
(fjfo by the formula 

(1.2) nW/k'-XeZB;'. 

Presented to the Society, April 3, 1942; received by the editors April 4, 1942. 
1 J. S. Frame, The double cosets of a finite group, Bull. Amer. Math. Soc. vol. 47 

(1941) p. 459. 
2 Throughout this paper the superscripts will refer to the transitive constituents. 
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Let fxst be the number of double cosets Hi for fixed 5, /. Then for 
fixed rj the constants cr

ap* are elements of a /zrs- by /x*'-dimensional 
rectangular matrix M*(Hr*), and the transposed matrix is the matrix 
MS(H1^) for the inverse double coset. For r = t these matrices are 
square. Their sum, with parameters b\ as coefficients, defines the im­
portant matrix 

(i.3) Ü:S( = I > ; M W ) . 

each of whose elements are linear combinations of the parameters b\. 
The principal theorem of this paper states that the determinant of 

the matrix n lKs * splits into factors Xi which are linear in the param­
eters b\, that these factors Xi are essentially the characters of the ir­
reducible representations I\- of G, and that the multiplicity mi of 
the linear factor Xi is fAlAi where /4 is the multiplicity with which Ti 
occurs in the reduction of the transitive group of matrices JR ' (T) , 

and where ]C/4f4— /**'• Finally the numerical coefficient which ap­
pears is an integer divisible by n^K Written as a formula, the 
theorem reads 

(1.4) THEOREM. 

O 0 m | Kst\ = n8n*A9tYl (xùmi, 
i 

where Wi=/4ju|, m=y^2mi=fx8t
1 Ast = an integer. 

A more precise definition of x* is obtained after writing 

(1.5) bv = 2Lt **xflx, 
x 

where ax are new arbitrary parameters and k^ is the number of ele­
ments of the double coset H" which belong to the class of conju­
gates C\. Then X; = X*CCaxCx) 'ls defined as the character of the ring 
element^axCx in the representation Ti. The integer Ast enters in the 
proof as the squared absolute value of the determinant of a certain 
transformation matrix. I t is not necessarily a rational square. 

In the special case of this theorem which appeared in the earlier 
paper already cited,8 all parameters a\ except a\ were zero, 5 was equal 
to /, Xi was the degree Ui, and the matrix Kst was a diagonal matrix 
with elements there denoted by ku 

In §2 the matrices of an intransitive group are broken up into 
blocks corresponding to the transitive constituents, and it is proved 
that the sum of the traces of the matrices of a subgroup is not less 

3 J. S. Frame, loc. cit. 
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than the corresponding sum for a coset. In §3 a set of "double coset 
matrices" V%y closely related to the double cosets H*> are found to 
form a basis for the matrices V permutable with a group of permuta­
tion matrices. Their products are expressible in terms of the structure 
constants crJ#n already defined in (1.2). The matrix R(a) corresponding 
to the ring element a =^2a\C\ is expressed in terms of the double coset 
matrices, and used in §4 to build a matrix of traces x(VH'VpR(a)) 
which is shown to be precisely the matrix nlKs% defined by (1.3). 
A unitary change of coordinates in §5 induces a change of basis from 
the matrices V„ to new basis matrices E* by means of a transfor­
mation (p*,J) whose determinant enters in the final factoring of the 
determinant nlKst from which the group characters are obtained. An 
example to show the application of the main theorem is given in §6. 

2. Cosets and submatrices. The n symbols of the intransitive 
group G will be assumed to be collected together into transitive con­
stituents C* of degree w', and the n right cosets H*y%

r will be arranged, 
in an order which preserves this grouping, so as to form the elements 
of a basis vector b of n rows and one column. Multiplication of b 
on the right by an element 7 of G permutes these cosets among 
themselves within each transitive constituent, so a permutation 
matrix R(y) is defined by the equation 

(2.1) by = R(y)b. 

Similarly if b' and R'(y) are the transposes of b and R(y), and if E 
is the nXn unit matrix, we have 

(2.2) b'(yE) = bfR\y) = b'Riy-1). 

Let us define the idempotent matrix E' to be the nXn matrix 
which is the unit matrix for the symbols of the constituent O and 
the zero matrix for the other symbols, and let us define a "completely 
symmetric" nXn matrix W each of whose n2 elements is a 1. Then 

(2.3) E = £ -E1, EŒ* = E*, EŒ* = 0 if t 9* s. 
t 

Let us further define the block Cts to be the nlXns rectangular sub-
matrix of an nXn matrix, whose rows correspond to the symbols of 
C' and whose columns correspond to the symbols of C\ We see that 
the matrix 

(2.4) Wts = EWE* 

consists of Ts in the block Cts and 0's elsewhere. 
The general matrix R(y) of the intransitive permutation group G 
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may be broken up into transitive components R*(y) in the diagonal 
blocks CH. We define 

(2.5) R'(y) = £ ^ ( 7 ) = R(y)E*t 

and we then have 

(2.6) R(y) = £ # ' f 7 ) . 
t 

The fact that the group G is transitive in the symbols of the con­
stituent O shows that the sum of the matrices Rl(y) for all y in G, 
which we denote by Rl{G), is a multiple of the matrix W". A simple 
count proves the following relation : 

LEMMA. 

(2.7) R*(G) = AW». 

A theorem on the traces of subgroups and cosets, suggested to the 
author by G. Polya as having been experimentally verified but not 
theoretically proved, is a consequence of this lemma. 

(2.8) THEOREM. The sum of the numbers of symbols left fixed by the 
individual permutations of a subgroup of any permutation group is 
greater than or equal to the corresponding sum for the permutations of 
any cos et of that subgroup. 

To prove this theorem we note first that each specified sum is the 
sum of traces of the elements of a subgroup H or of a coset Hy, and 
second that if the theorem holds for every transitive constituent of 
an intransitive group G, then it holds, by addition, for G as well. 
Focusing attention on a constituent C' which is transitive for G, we 
further subdivide it into sets Ctu which are transitive for the given 
subgroup H. To the corresponding matrices Rtu(H) we apply the 
lemma, showing that each is a square block of dimension ntu, each 
of whose elements is equal to h/ntu, and whose trace is equal to h. 
Multiplication of the matrix Rl(H) by a matrix R(y) has the effect 
of permuting the columns and replacing the diagonal elements either 
by the same positive integer as before, or else by 0. Thus the trace 
of Rl(Hy) is less than or equal to the trace of R*(H)f which was to be 
proved. 

3. Double coset matrices and structure constants. To describe the 
structure of the general w-dimensional matrix V which is permutable 
with every permutation matrix R(y), of an intransitive permutation 
group G, we define 
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(3.1) Vts = ElVE\ 

Then the permutability condition 

(3.2) VR(y) = R(y)V 

together with (2.5) implies the relations 

(3.3) Vt8Rs(y) = ElVR(y)Es = E ^ ( T ) F E S = R^V1*, 

which may be expressed in words by saying that the rectangular sub-
matrix Vts of F intertwines the matrices Rs(y) and R*(y). From (3.3) 
we obtain the equation 

(3.4) Vts = R^V^R^y-1), 

which states that the rectangular matrix Vts is unchanged if its rows 
are permuted by the matrix R*(y) while its columns undergo simul­
taneously the transposed permutation [R8(y)]'. I t follows in general 
that many of the coefficients in the matrix Vts are necessarily equal 
"by symmetry." If E^ is defined to be a matrix which is zero except 
for a 1 in the r th row and the ath column of the block Ct9, if H\ y\, 
H8, 7* are defined as in §1, and 6* and 6s are elements of Hl and Hs, 
respectively, then 

(3.5) E„ = R(6yT) EuR(fiyr). 

To obtain an invariant matrix we take the sum of all the transforms 
of (3.5) by all y in G. We get 

£ R'iy'^ElR'iy) = £ R\eWr'tT1EnR\9W.y) 

(3.6)7 = £ R'iô^EWie'yliylrVf1) *'(«) 
a 

= E * V 1 ) J & * ' ( T . ) * ' ( T ) 

where ya is any element chosen from the double coset H% which con­
tains TtCVr)-"1- We define the double coset matrix F« by the formula 

(3.7) Va = ( I / O E * V ^ I V ( Y - ) * - ( 7 ) , 
Ï G Ö 

so that its coefficients are all O's and l 's . In this matrix there are 
h*/h£ l ' s in each row and hs/hs« l 's in each column of the block C*\ 
and O's elsewhere. Furthermore, by averaging equation (3.4) for all 
7 in G, it is readily seen that every Vts is a linear combination of these 
basis matrices V% and in particular that 
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(3.8) Z F l S = ^ 8 . 
a 

From this discussion it also follows that 

(3.9) wtsv: = wtrhr/h:. 

The number of independent matrices V„ in the block C** is equal 
to the number of double cosets iJ«, which was denoted by ixst. Since 
the transposed matrix (F«) ' = V*> corresponds to the inverse double 
coset {Hty^H^^Hty^Ht/K, it follows that fxst = fxts. 

The product of two double coset matrices V^> and F« is given in 
terms of the coefficients crJ^ of (1.2) as follows: 

(3.io) v';,v: = z cy;. 
To prove this we work from the definition (3.7) and apply (1.2) 

Vf,,Va = (l/hah0)J2 R (y )EUR (y„f)R (y)R (8 )EnR ( Y « ) # («) 
7.» 

= (1/*1V)Z R\y~1)EuEuR\yan'y,.y) 
y 

= (l/hrh8h) Z R\y~1)EnR\H"H\\)R\y) 
7 

E rst T—^ t . — l s t s r . ^ r t . r y t r . v 

^ , Z * (Y )-EU-R (H, /A A )-R (7) 
17 7 

Z r«« tr 

By summing equation (3.10) first for/3 and then fora, and applying 
(3.9) we obtain 

wuv: = E e x = w v / o , 

Hence 

(^ • 1 2) 13 C«/5fl = * /*« Î S ^ = A /A/9 î X) ^ = » . 
j8 a a,/3 

These sums are the sums for a column, or row, or all elements of the 
matrix M'(Itf) defined in §1. 

4. Conjugate classes and the trace matrix. The matrix R(C\), de­
fined to be the sum of the matrices R(y) for all y in the class of 
conjugate elements C\, and likewise the more general matrix R(a), 
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where a =^2a\C\ is a general element from the central of the group 
ring of G and a\ are arbitrary parameters, are both matrices per­
mutable with the group, and as such are expressible in terms of the 
double coset matrices. They are confined to the diagonal blocks C", 
so we have 

(4.1) R\CX) = E glv?; R\a) = £ axR\cx). 
8 

The coefficient g x̂ is the number of elements of C\ which belong to 
any particular right coset of H%. 

We are now ready to define and evaluate the important /JLS'-dimen­
sional trace matrix Xs^{a) : 

X%(a)^x(V>s;R\a)) 

(4.2) 
X \ TJ,5 / 

tst t 
= Ys WocdvgrjXXiVv'V,,) 

X,* 

E tst t t 

t ^-> t8t t tst t 

V 

The letter % is used to denote the trace of a matrix. The new co­
efficients kl

vx and parameters b\ are defined as follows: 

(4.3) &„x = gv\h /hv ; bv = X) ^ „ x . 
x 

The integer k\,\ is the number of elements of C\ which occur in the 
whole double coset H%. In terms of the matrix Kst of (1.3), we have 

(4.4) X%) = nK%) = nZ *>8(<). 

In applying the theory to a given group, as in §6, we first compute 
the matrices M3 for each double coset, form the sum with parameters 
b\ as coefficients, and factor the resulting determinant into factors 
linear in the b\. One of these factors will be (&i+&2 + * • * )> corre­
sponding to the identity representation. We then compute the in­
tegers k\\ by studying the group directly, and replace the parameters 
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b\ by appropriate linear combinations of the parameters a\. The 
coefficients of a\ so obtained in any linear factor, divided by the 
number g\ of elements in C\, are proportional to the traces x*x of the 
elements of C\ in the irreducible representation I \ corresponding to 
that factor. 

5. The determinant of the trace matrix. A unitary matrix V exists 
which will simultaneously reduce all the matrices JR(T), where 7 can 
now be thought of as an arbitrary element of the group ring of G. 
The matrix U can be chosen to be zero outside the diagonal blocks 
C", in which we define Ut = EtUEt. I t can further be so chosen that 
all the equivalent irreducible components in the decomposition of 
R(y) are actually identical, and we shall assume that this is done, 
and that the irreducible representation I \ of degree tii occurs with 
multiplicity i4 in (Ut)"1Rt(y)Ut. The intersections of the n^l rows 
and nti4 columns of the block O* which belong to the representation 
I \ will be called a representation district Df. The district itself divides 
up into /4/4 squares of ni dimensions. With each square is associated 
a unit matrix Et

i
s
tkhk = l, • • • , / 4 ; / = l , • • • , /4, conveniently denoted 

by E^. Every matrix permutable with all the reduced matrices 
U~xR(y) U is a linear combination of these matrices E^. In particular 
we have 

— 1 St . 8V —1 8t t ^—\ St St 

U VaU = (U) VaU = E P a A , 

( 5 * * ) Tj-liris ri V ^ -%t T7ls 

U Va>U = 2-sPanE^. 
V 

The number of basis matrices El* for fixed /, 5, must equal jix8t, the 
number of V%, so we have the relation 

(5.2) M = S MiMi-
i 

Thus the coefficients (p^) defined by (5.1) form a //^-dimensional 
square matrix. Its determinant, denoted by P3t, is not zero, since both 
the U~lVtsU and the Ets form a basis for the same set of matrices. 
Tha t Pst is an algebraic integer (not necessarily rational), divisible 
by (n8^)112, can be shown as follows. 

A. partial reduction of the linear group to split off the identity 
representation I \ in each constituent Cl can be effected by first re­
placing U* by a unitary matrix whose (w, v)th element in the block 
Qtt i s €(u-i)(«-i)/(w«)i/2| (€ a n w<th r o o t 0f unity), and then effecting 
the reduction in the remaining nl — 1 dimensions. The coefficients 
Pai are thus readily computed explicitly: 
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tr> ->\ 8 t / / l S t \ If 8 K V 2 / i 8 i K l l 2 l i 8 i 

(5.3) pai = {g/ha)/inn) = (A A) /A« ; 
(5.4a) 2 ^ P « i = 2_j (n h /ha)/(nn) = (nn) . 

a a 

Furthermore, since the matrix Wta of (3.8) is of rank 1 and is repre­
sented by 0 except in the district Df, we have 

(5.4b) E P ' « , = 0, u ^ l . 

Adding all rows of (p^) to the first, we find that 
/ , - - \ St . S t. 1/2 8t 

(5.5) P = ( » » ) Pi , 

where Pf is the cof actor of p?x in Ps*. Chopping off the first row and 
column of each, we multiply the conjugate of (p^) by the transpose 
of this same matrix, and obtain a matrix (As^) of n9t — l dimensions, 
with determinant Ast given by the formula 
, „ . , * . . St —St St —St St , 8 t 

(5.6) A = Pi Pi = P P /nn . 

The element in row a— 1 and column /8 — 1 of (A%) is 

ikppi,ki 
. . . St <y—-y _ St St yç-\ tS St •*ç—s y-—\ t8 St 

( 5 . 7 ) Aa0 = 2L/ PariPprj = JLJ Pa'n'Pfa ~ /-i 2 ^ P « ' t ' » ^ 
1/>1 i;>l t > l &,Z 

since the subscripts 77 and 77' stand for the three subscripts (i, kl) and 
(i, Z&), respectively. The rule of combination (3.10) which defines the 
product of V„' and V% holds likewise for the representatives of these 
matrices in the districts corresponding to I \ , and we have for fixed i 

. <̂ -> tS St Y ^
 t8t U 

( 5 . o ) 2-/ Pa'i,hkPpi,kl = 2L/ cPaiP6i,hh 
k 8 

The trace Tji==^JiPM!n of the yu'-dimensional matrix representing 
F" w»- times in the district Df is an algebraic integer. Hence each 
element of the matrix (A%p), 

(5.9) Aap = 2^j cpabTsi 

is an algebraic integer, and the determinant Ast is an integer. 
We now use the transformation (5.1) to obtain a new expression 

for (4.2): 

Xlka) = x(Y,CE%lEa:{U)-1R\a)u) 

(5.10) tt 9t /J7tt t -1 t t y ^ .*_•* 
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Taking determinants of both sides of (5.10) we obtain 

The subscript rj stands for the three subscripts i, kl, but since x^(^) 
is a character depending on i alone, we group together the w t=/xX 
equal factors x*(#)> u se (5.6), and write 

(5.12) \*k*)\-n'n,A'tJllxAa)\mt. 
i 

Reference to (4.4) gives us the final formula for the principal theorem 
of (1.4). 

THEOREM. , , 

/ \ * ' 
(5.13) ( » 0 - | * > ' ( E <*xCx) | = n'n'A'*U f 2>xX<(Cx) \ , 

E 8 t St 

mm = fx . 
6. An illustrative example. To illustrate the application of this 

theorem to the determination of one of the characters of a fairly com­
plicated "simple" group, we choose the simple group G20920, which is 
an invariant subgroup of index 2 in the group of isomorphisms of 
the general cubic surface. I t can be represented by a group of permu­
tations R1 on the 45 tritangent planes (or triangles) of the cubic 
surface, and also by a group of permutations R2 on the 27 lines of the 
cubic surface. These two transitive groups, when completely reduced, 
have besides the identity one common irreducible component, whose 
character we shall compute by our theorem (5.13). Let H1 and H2 

be the subgroups of orders h1=g/n(1) =576 and h2 = 960, which leave 
fixed, respectively, a particular triangle T and one of its lines L. The 
common subgroup of order h{2=192 leaves both fixed. There are 
just two double cosets H™, namely H{2 = H1H2/192, consisting of 2880 
elements which transform T into one of the five triangles on L, and 
a second double coset H$* consisting of 23040 elements which trans­
form T into one of the other 40 triangles. Hence there are just two 
irreducible components common to R1 and R2, the identity and one 
other. There are three double cosets H^, namely H\1 = H1 containing 
1 coset leaving T fixed, Hi1 containing 12 cosets which take T into 
one of the 12 "adjacent" triangles having a line in common with it, 
and Hi1 containing 32 cosets taking T into a non-adjacent triangle. 

To determine the constants c%v we first note that 

(6.1) # î 2 # i 7 9 6 0 = 3ff" + ff", 
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since just 1/5 of the operations of HlH2 belong to H1 and the other 
4/5 transform T into an adjacent triangle, and since Hi1 contains 
12 times as many elements as H{1. Then we use the formulas (3.12), 
which become 

x -^ 121 r n 121 1 12 

2 ^ c<*iri — Zs ci<*r, = n I hi = 3, 

(6.2) 

E 121 ^ ^ 121 1 12 

Ca2V = L J C*<*V == * /*2 = 24. 
a a 

The matrices Af̂ jBTj1) may now be written 

2 IL / 3 0\ 2 ii / l 2 \ 

(6.3) 
2 ii / 0 3 \ 

* < * • > - G * ) • 
In factoring the determinant | i£2 1 | of (1.3) it will be convenient 

to omit the superscripts from b\, k\\, gjx> A21. Then 

K21 

(6.4) ' 

3bx + b2 2b2 + Sb-i 

2b2 + Sbz 246i + 2262 + 21bz 

= (6i + b2 + h)(72b1 + I8b2 - 9bz) 

The first of these factors corresponds to the identity representation 
I \ . The other factor remains to be investigated. Since w1 = 45, equa­
tion (5.13) gives 

= 27-45.4 2>xx(Cx) (6.5) 

where 

(6.6) 

(45)2(72Ô! + 18ô2 - 9/ 

b* — S <^r,kv\, 
21-21 

i = Pi Pi . 
X 

Equating coefficients of ax in (6.5) after using (6.6) we have 

(6.7) ^x(Cx) = (5/3)(72*!x + 18&2X - 9É*). 

The degree d of this representation is d = 120/A, which must be an 
integer less than 27. Noting that ki\ = gi\, &2x = 12g2x, and &3X = 32g3x, 
we may rewrite (6.7) in the form 

f. „, x(Cx) = d(gix + 3g2\ - 4g3x) 
(6.8) 

= gxXx 
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where xx is the trace of a single element of C\ and g\ is the number of 
elements in the class C\. To complete the computation it is necessary 
to find the constants gv\. Taking the 20 classes of conjugates of the 
simple group of order 25920 in the order listed in an earlier paper,4 

we calculate x(Cx) a n d Xx a s follows. 

gx 
1 

45 
270 
540 

40 
40 

360 
360 

2160 
2160 
480 

1440 
240 

2160 
720 
720 

3240 
5184 
2880 
2880 

giX 
1 

13 
30 
12 
8 
8 
8 
8 

48 
48 
32 
32 
32 
96 
64 
64 
72 
0 
0 
0 

g2X 
0 
0 

12 
12 
0 
0 
0 
0 

48 
48 

0 
48 
12 
60 
12 
12 
72 

144 
48 
48 

g3X 
0 
1 
3 

12 
1 
1 

11 
11 
48 
48 
14 
26 

2 
42 
16 
16 
72 

108 
72 
72 

x(Cx) 
d 

9d 
54d 

0 
Ad 
4td 

- 36d 
- 36d 

0 
0 

- 2U 
72d 
60d 

lOSd 
36d 
36d 

0 
0 

-lUd 
-lted 

rhe scalar product of the columns x(Cx) and xx is e 

X\ 
d = 20 
d/S = 4 
d/S = 4 
0 - 0 
d / 1 0 - 2 
d/10 = 2 

- d / 1 0 - - 2 
- d / 1 0 - - 2 

0 = 0 
0 = 0 

- d / 2 0 = - 1 
d / 2 0 - 1 
d/ 4 = 5 
d/20 = 1 
d/20 = 1 
d/20 = 1 
0 = 0 
0 = 0 

- < Z / 2 0 = - 1 
- d / 2 0 - - 1 

qual to the order 
25920 of the group, so we have 1296d2/20 = 25920; d = 20; A=6. 
Hence the degree d is 20, and the last column gives the required 
character of the irreducible representation of this degree. Eliminating 
the common components of degree 1 and 20 from the permutations 
on 45 and 27 symbols, we immediately obtain two other irreducible 
components of degree 24 and 6, respectively. The components of 
degree 1 and 20 occur in the Kronecker square of the one of degree 6, 
and an irreducible component of degree 15 is left. Thus the laborious 
work of obtaining the character of degree 20 bears fruit in obtaining 
three more characters with almost no work at all. The theorem of this 
paper gives a method of digging out some of the characters of a group 
if simpler methods are not available. 
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4 J. S. Frame, The simple group of order 25920, Duke Math. J. vol. 2 (1936) p. 483. 


