HOMOGENEOUS AND NONHOMOGENEOUS
DIOPHANTINE EQUATIONS

ANTHONY A. AUCOIN

In an earlier paper! we considered homogeneous polynomials f and
g whose degrees are relatively prime, and solved the Diophantine
equation f(x)=g(y). These results are generalized in the present
paper. The solutions are given in terms of arbitrary parameters and
if the parameters are integral the solutions are also.

We begin our discussion with the hypothesis that the functions

f(x) =f(x11y Cr oty Xamy XLyttt xnm)) g(x)=g(x11y ey Ximy
Xaly * * * , Xum) are polynomials with integral coefficients, homogeneous
in each set of variables xr1%k2 « + + %xm; f being of degree oy, 20, g being

of degree 8, =0 in the sets xpxse - * + %xm and dy =y —Bs. We suppose
further that integers \;, u; =0 exist such that?

n

(1) Z d,')\i = - Z dim = 1.

=1 =1
THEOREM 1. The Diophantine equation

(2) flx) = g(x)

has integral solutions, and every solution for which the members of
(2) do not vanish, is equivalent (in a sense to be defined) to one of the
solutions given by

(3) Xpj = aki[g(a)])\k[.f(a)]ﬂk, k= 1, cee, n;]’ = 1, s, m,
where the ayj are arbitrary integers.

PRrROOF. Let xi;=ay;s**. Then by (1), (2) becomes® sf(a)=1tg(a),
which is satisfied identically in the ay; if s=g(a), t =f(a). Hence (3)
is a solution of (2).

We now define the concept of equivalent solutions. Suppose
Xr;=px; is a solution of (2). If there are no integers b>1, pi; such
that py;=p«;0%, where the g, are positive integers such that ZLlakak
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1 A. A. Aucoin and W. V. Parker, Diophantine equations whose members are homo-
geneous, this Bulletin, vol. 45 (1939), pp. 330-333.

2 We need to postulate only the existence of \; since it may be shown that for n
odd pi=" d;i—di—23_ ;""" "di s —\: where du,p=d,, and for n even ui=)_" d;—d;
—2Z,iﬂf)'ld¢+k—2d;,2+i—)\; where d =d;, for k=n, di =0 for k>n and Gnip=0dp.
We must, however, assume that u; 0.

3 It will be shown later that s, £50.
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=Y & B0k, then xy;=pr; is defined to be a primitive solution of (2).
If xx;=pr; is a primitive solution of (2), then xy;=px;0% (derived
from the primitive solution), where b is a nonzero integer,* g; are
positive integers such that D r_,axor =2 s-18:0%, is also a solution.
Two solutions are said to be equivalent if they may be derived from
the same primitive solution.

Suppose now that x,;=ps; is a solution of (2). Then f(p) =g(p). If
we choose ay; = prj, (3) becomes x;;=px;[f(p) |**# which is equivalent
to the given solution x;=px; provided f(p)s0, since from (1),
Z:=1ak(>\k+[ik) =Z;=13k()\k+ﬂk)- Iff(p)#O, then S, t#0.

As our next topic we suppose that for the functions considered
above, f is of degree —a, and g is of degree —f, in the set x,, xp2 * * -
xpm, Where a,, 8, are positive integers.’ Here we let d,=0,—,.

THEOREM 2. The Diophantine equation

(4) J(2) = g(x)

has solutions, and every solution, for which the members of (4) do not
vanish, 1s equivalent to a solution given by

(%) ar; = ;4 (@) B(a) Prrer[g(a) P [ 1) |,
where A (x) =H§"= %1, B(x) =H§"= 1x‘f§, the ou.; being arbitrary integers.
Proor. If we multiply (4) by 4 (x)B(x) we have
(6) A(x)B(x)f(x) = A(x)B(x)g(x),
each member of which is a polynomial. If we let
(N Xj = oS EE,
equation (6) becomes® s4 (o) B(a)f(a) =tA (o) B(a)g(e), which is iden-
tically satisfied in the oy if s = A4 (o) B(a)g(ar), ¢ = A (o) B(a)f (). Hence
(5) is a solution of (4).
It is evident that more than one of the corresponding sets of vari-
ables may be of negative degree.

Suppose that xi;=pr; is a given solution of (4). Then f(p) =g(p).
If we choose a;;=prj, (5) becomes

Xkj = Pkj [A (p)B(P)f(P) ])\k'Hlk

which is equivalent to the given solution x;=px; provided f(p)#0,
since from (1)

4 If =0, the solution is trivial.
8 The \i, and hence the u;, here are different from those of Theorem 1.
¢ It will be shown later that s, £0.
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n

Z ar(Me + pE) — 2a,(\p + pp) = E Br(\e + pr) — 28,(Np + I‘p)-
k=1 k=1

If f(p)#0 then s, t#0. We now pass on to our next result.
Suppose that f is of degree —a, in the set x,1 %2 * + + %pm and g is

of degree —f3, in the set x, %4 * * - X4m Where a,, B, are positive in-

tegers. Here” d,= — (o, +8,), dg=0a+B,.

THEOREM 3. The Diophantine equation f(x) =g(x) has solutions, and
every solution for which the members do not vanish, is equivalent to a
solution given by xi;=ou;[C(a)D () M [g(a) P+[f(a) ] where C(x)
=JT7 222, D(x) =]1r %%, the cuj being arbitrary integers.

The proof is similar to that of Theorem 2.

We can now extend the above methods of solution to nonhomo-
geneous equations. The nature of this extension is contained in the
following theorem.

THEOREM 4. The Diophantine equation®
(®) f(x) = g(x)

where f(x) =D man] [1= 10, g(x) =D 2 10u] [5- 1654, as, by, are integers,
@iy Brj positive integers, has solutions if there exist positive integers
uq, 05, M, N such that

> omiui =M + 1, h=1,---,m,

=1

q

Zﬁkiui=Mv k=1)"'1py
©) =

Zahivi’:N, h=1,-‘-,m,

=1

q

2 Brpi=N+1, E=1,---,p,

j=1

and every solution for which the members of (8) do not vanish, is equiva-
lent to a solution given by

(10) x; = a;gla)]*i[f(a)]>,

where the o; are arbitrary integers.

7 As in the previous theorem the \; and y; will be different from those of Theorem 1.

8 A. A. Aucoin and W. V. Parker, op. cit., p. 331. Theorem 4, which generalizes
Theorem 2 of the reference may be obtained from that theorem directly by setting
Vi =Xi.
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Proor. Let x;=aj s"iti. Then (8) becomes, by (9), s¥*+4Nf(a)
=sMN+lg(a), which is satisfied identically in the o; if s=g(a),
t=f(a). Hence (10) is a solution of (8).

When the conditions of (9) are satisfied there also exist non-
negative integers R, #/ such that

n q
(11) Y awu! =R, X Biul =R, h=1,---,mk=1,---,p.
=1 =1
If x;=p; is a solution of (8) and there are no integers d>1, u/, p/
such that p;=p/d* where «/ satisfies (11), then x;=p;is defined to be
a primitive solution of (8). If x;=p; is a primitive solution of (8),
then x; = pd% (derived from the primitive solution) where
d (#£0) is an integer and u; are non-negative integers satisfying
(11), is also a solution.
Suppose x;=p; is a solution of (8). Then f(p) =g(p). If we choose
a;=p;, (10) becomes x;=p;[f(p) ]+ which is equivalent to the solu-
tion x;=p; since from (9)

D ani(ui + v) = 2 Briu; +v) = M + N+ 1.
=1 7=1

In Theorems 2 and 3 it is conceivable that the method applies to
cases other than those in which an entire set of variables appear in
the denominator. The cases are too numerous to consider. It is like-
wise apparent that the method of Theorem 4 applies when some of
the exponents are negative. As there is no typical case the procedure
will be illustrated by a particular example.

Consider the equation

(12) ax*u’/v" 4+ byvt/u? = cx®/w
which may be written as
(13) ax*u’w + byl = cxdu’.

If we let x =asPia, y=0Bsret%, y=NsPat®, v =pusPst%, w=vpsPt% and sub-
stitute in (13) we have

s3PrHTogtpggda et god\Ty - stratllvgtpgptagtilaghepRy 1l
= §orF2ogt Ty bat2e5+Tecab\2, 7,
We require an integral solution of the equations

3pr+ Tps+ ps = m, 31+ T¢s+ s
4P2 -+ 11?4 -+ Ps m, 4q, + 11(14 + ¢

n+1,
n—+1,

I
I
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Spi+ 205+ Tpa=m+1, Su+ 2¢5+ Tqu = n

A solution of these equations is p1=4, pa=3, ps=11, pa=7, ps=1,
g1=4, ¢2=3, ¢gs=11, g4=7, ¢s=3. Hence a solution of (12) is x =as*?,
y =% wu=Ns"U4", v=pus"t?, w=vwst* where s =ac®\v4bB%',
t=calN.

Ifx=x'y=y,u=u',v=0, w=w'is a given solution of (12) and
the choice a=x', B=y', A\=u', u=7', v=w' is made then s=¢ and the
solution becomes x =x"t8, y =y'f8, u=u't?2, v=v"1"%, w=w't* which is
equivalent to the given solution provided ¢50.

’
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VECTOR ANALOGUES OF MORERA’S THEOREM

E. F. BECKENBACH

Let the vector
X = X(x1, %2, 23) = X(x) = Xud + Xoj + Xk

be defined and continuous in the domain (non-null connected open
set) D. Consider the mean-value vector

) X0(x) = l—;—]— X(x + BV,
] Vo

where V, denotes the sphere
2 2 2 2
Lttt HE<p,
and | V,| its volume,
| V,,| = 47p?/3.
The vector (1) can be defined thus for only a part D, of D, but this
is of no consequence since p is arbitrarily small.

Since X(x) is continuous, it follows that X®(x) has continuous
partial derivatives of the first order; these are given by

i) 1
(2) — X0 (x) = —or X(x 4+ pa)ayda,
390,, I V,,I Sp

where S, denotes the surface of V, and ai, as, a3 are the components
of the unit vector along the outer normal to .S,.

Presented to the Society, September 5, 1941 under the title Vector formulations of
Morera’s theorem; received by the editors March 3, 1942,



