
ON PERRON INTEGRATION 

E. J. McSHANE 

The definition of integral here presented had its origin in an unsuc­
cessful a t tempt to establish the theorem on integration by parts1 

(Theorem 4.1 of this note) for the Perron integral, without detouring 
through the special Denjoy integral. In order to avoid the difficulties 
which I could not overcome, I amended the definition of the integral; 
the resulting definition I presented at the Oslo congress in 1936. 
Recently I have found a proof that the "new" integral is actually 
equivalent to that of Perron. 

As compared with Perron's definition, the new definition has the 
slight disadvantage tha t it requires four associated functions instead 
of two; in all other respects the proofs of theorems for the Perron 
integral carry over unaltered. I t has the advantage that it permits 
us to prove the general theorem on integration by parts (Theorem 
4.1) without recourse to the deep-lying equivalence with the special 
Denjoy integral. This theorem is important, not only in itself, but 
because it also contains the corollary that if f(x) is Perron integrable 
and g(x) of limited total variation, their product is Perron integrable. 
Also it leads at once to the second theorem of the mean for Perron 
integrals. 

1. Definition of the integral. Let f(x) be a function defined on an 
interval [a, b] and assuming values which are real numbers or + oo 
or — oo. A set of four functions <j> l(x) (i = 1, 2, 3,4) is a tetrad adjoined to 
f(x) on [a, b] iî the following conditions are satisfied. 

(1.1a) The <f>l(x) are continuous on [a, b] and all vanish at x = a. 
(1.1b) For all except at most a denumerable collection of values of x 

the relations 

- o o ^ D+4>\ - oo 7* #_4>2, 

+ oo ^ rr<j>*} + oo ?é D+<t>* 

are valid. 
(1.1c) For all except at most a denumerable collection of values of 

x the relations 

Presented to the Society, December 31, 1941 ; received by the editors December 1, 
1941. 

1 For a proof of the theorem with the added hypothesis that g'(x) is finite except 
for a denumerable set, see R. L. Jeffery, Perron integrals, this Bulletin, vol. 48 (1942). 
pp. 714-717. 
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D+4>\x) £ ƒ(*), Z>_4>2(*) è ƒ(*), 

D~<t>z(x) S f{x), Z>V(tf) ^ ƒ(*) 

are z;a/id. 
In case the functions #*(x) also satisfy the conditions 

\^{b) - <t>i(b)\ < e, ij = 1 ,2 ,3 ,4 , 

the tetrad will be said to be e-adjoined t o / . Functions satisfying the 
conditions imposed on 01, </>2, <£3, <£4, respectively, will be called right 
majors, left majors, left minors, right minors, respectively. 

(1.2) The function f {x) is P^-int egr able on [a, b] if f or every positive 
€ there is a tetrad e-adjoined to f on [a, b]. 

Before defining the integral we establish an essential lemma. 

LEMMA 1.1. If yp is a major function {right or left) for f, and <j> is a 
minor function {right or left) for ƒ, then \f/—ct> is monotonie non-de­
creasing. 

Suppose first that \p is a right major and 0 a right minor. By 
(1.1b) and (1.1c), except on a denumerable set we have 

D+{yp - cf>) ^ D+xl/ - D+<t> è 0 . 

So2 \l/—<f> is non-decreasing. A similar proof applies if \p is a left 
major and 4> a left minor. 

Suppose next that ^ is a right major and <t> a left minor. By a 
theorem of G. C. Young,3 the inequality D+(f>^D~<l> holds except 
at most on a denumerable set. So by (1.1b) and (1.1c) we have 

D+ty - <t>) ^ D+t - P + ^ 0 

except on a denumerable set, and2 \p— </> is non-decreasing. 
A similar proof applies if ^ is a left major and cj> a right minor. 

COROLLARY 1.2. If f{x) is P*-integrable on [a, b], it is also P*-inte-
grable on [a} x] for all x such that a<xSb. 

For by Lemma 1.1 every tetrad which is e-adjoined to ƒ on [a, b] 
is also e-adjoined to ƒ on [a, x]. 

LEMMA 1.3. If f{x) is P*-integrable on [a, b], there is a function 
F{x) on [a, b] which is the g.l.b. of all right majors, the g.l.b. of all 
left majors, the l.u.b. of all left minors and the l.u.b. of all right minors. 
The function F{x) is continuous. 

2 Saks, Theory of the Integral, p. 204. 
3 Hobson, Theory of Functions of a Real Variable, vol. 1, 1927, p. 392. 
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Let <f> be any minor of ƒ. If 01 is a right major, for every x in 
[a, b] we have 

<t>l(x) - <t>(x) ^ <t>l(a) - <t>(a) = 0 ; 

so <f>(x) is a lower bound for right majors. If we define F(x) to be 
the g.l.b. of all right majors, then F(x)^</}(x). Here $ is any minor, 
so F is an upper bound for all minors. If €>0 , there is a tetrad </>* 
which is e-adjoined t o / , so 

(1.4) F(x) - <t>*(x) S <t>Kx) - tf>4(x) ^ ^(b) - <t>*(b) < e, 

and likewise F(x) —</>3(x) <e. That is, F(x) is the l.u.b. of all right 
minors and also is the l.u.b. of all left minors. Interchanging majors 
and minors shows that F is also the g.l.b. of all left majors. 

If we let e approach 0 through a sequence of positive values, by 
(1.4) the corresponding right minors </>4(x) converge uniformly to 
F(x), which therefore is continuous. 

DEFINITION 1.4. If f(x) is P*-integrable on [a, b], and F(x) is the 
function defined in Lemma 1.2, then the P*-integral of f over [a, b] is 
defined to be 

(P*) f f(x)dx = F(b). 
J a 

Henceforth we omit the P* before the integral. 

COROLLARY 1.5. With the hypotheses of Definition 1.4, if a<x^b 
then 

f f(x)dx = F(x). 
J a 

2. Properties of the integral. We can now readily establish the ele­
mentary properties of the P*-integral; i f / i a n d / 2 are P*-integrable, 
so is kfi and so is / i ± / 2 if defined (that is, if never of the form oo — oo ), 
and the integrals have the values to be expected; f\ is P*-integrable 
over every subinterval of [a, b]y and is an additive function of 
intervals; and the function fo(x)=fx( — x) is P*-integrable over 
[ — &, —a], and its integral is equal to 

/
fi(x)dx. 

a 

The proofs differ from the corresponding proofs for the Perron inte­
gral only in minor details. 
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Furthermore, we can readily show that every P*-integrable func­
tion is finite almost everywhere, is measurable, and is almost every­
where equal to the derivative of its indefinite P*-integral. The proof 
in Sak's Theory of the Integral, p. 202, needs only obvious changes. 

An alternative form of definition is given in the next theorem. 

THEOREM 2.1. Let f{x) be defined on an interval [a, b]. In order that 
f(x) be P*-integrable on [a, b] it is necessary and sufficient that for 
every positive number e there exist four functions xf/^x) ( i = l , 2, 3, 4) 
which satisfy (1.1a) and (1.1b), satisfy the inequalities in (1.1c) for 
almost all x, and are such that 

(2.1) \V(b) -V(b)\ <«, hJ= 1 ,2 ,3 ,4 . 

In this case, the P*-integral of f over [a, x] is the common g.l.b. of all 
functions \pl(x) and \p2(x) and the common l.u.b. of all f unctions \f/z(x) 
and \f/*(x) which satisfy the conditions stated. 

The proof is essentially that given by Bauer4 for the Perron inte­
gral. As an obvious corollary, if ƒ(#) is P*-integrable on [a, b] so is 
every function equivalent to ƒ, and the integrals are the same. 

3. Substitution. Next we establish the following theorem on change 
of independent variable. 

THEOREM 3.1. Let f(x) be P^-integrable on an interval [a, b]. Let 
g(y) be a function defined on an interval [a, /3] and possessing the 
following properties. 

(a) g(y) is continuous and non-decreasing on [«,/?]. 
(b) g_(a)=a, g(P)=b. 
(c) Dg{y) < co except at most on a denumerable subset of [a, /3]. 

Then f(g(y)) g(y) is P*-integrable over [a, j8], and 

f(x)dx = J f{g{y))g{y)dy. 

For each positive e there is a tetrad [<£*] which is e-adjoined to 
f(x) on [a, b]. Define 

iKy) = 4>Kg(y)), f = 1, • • • , 4; « ^ y ^ i». 

I t is obvious that the ypl are continuous on [a, b] and vanish at 
y—a. Let E± consist of all y in [a, /3] such that there exists a point 
y' with ; y < y ^ j 3 and g(y') =g(y). The rest of the set [a, j8] we 

4 H. Bauer, Der Perronsche Integralbegriff una seine Beziehung zum Lebesgueschen, 
Monatshefte für Mathematik und Physik, vol. 26 (1915), pp. 153-198; also Saks, op. 
cit., p. 203. 
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denote by E2\ if y is in E2 then g(y')>g(y) for all y' such 
that : y < / ^ | 3 . 

If y is in Ei, the function g(y) remains constant on an interval 
[y, y']y so each ypl(y) also is constant on \y, y']. Therefore 

(3.1) - oo < D+^(y) = 0 = f(g(y))g(y), 

(3.2) + oo > D+r(y) = 0 = f(g(y))g(y). 

If y is in E2, for each y' such that ;y <yf S/3 we have 

^ l ( y ) _ fl(y) 0l(g(/)) - 0l(g(y)) g(ƒ) - g(y) 
(3 .3) = ; 

By definition (1.1), D+<j>l> — oo except a t most on a denumerable 
set Xo. If x is in X0, the equation gG0=ff can have at most one 
solution in E2l for of two solutions lying in [a, /?] the lesser is in Ei 
by definition. So the set of such solutions is denumerable. To it we 
add the at most denumerable set on which Dg = oo ; the sum F0 is 
a t most denumerable. If y is in E2 — F0, we let y'—>y+, and from 
(3.3) obtain 

(3.4) B ^ ^ - oo. 

Moreover, if g'{y) exists, as it does almost everywhere in [a, /3], 
the same limiting process yields 

(3.5) D+Vb) = D^(g(y))i(y). 

Combining this with (3.1) and (1.1), we see that D+\j/l(y) > — oo 
except at most on a denumerable set and 

D+V{y) ^ My))ib) 

on almost all of [a, /3]. 
The other functions rp1 can be discussed analogously; we thus see 

that they satisfy the first three conditions of Theorem 2.1. The last 
condition (2.1) is trivial, since 

V<fi) - i W = I *W - *'(*) I < «• 
So by Theorem 2.1 the product f(g(y))i(y) is P*-integrable on 
[ce, /?]. Moreover, its integral over [a, /3] lies between ^4(j8) and 
^x(/3), that is, between <£4(&) and ^(b). So does the integral of ƒ(x) 
over [a, b]. Since </>4(&) and ftib) differ by less than an arbitrary e, 
the two integrals are equal. 

Theorem 3.1 has an obvious analogue for monotonie non-increas­
ing functions g(y). Also, it is worth observing that the hypotheses 
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on g (y) force it to be absolutely continuous. For if we set ƒ = ! in 
Theorem 3.1 we find that 

g(P) - g(«) = a ~ b = J gOVy. 

Since g is non-negative, the integral on the right reduces to a Lebesgue 
integral, as we can show by the usual proof for the Perron integral. 
This equation implies the absolute continuity of g(y). 

4. Integration by parts. The principal reason for devising Defini­
tion 1.1 was to enable us to prove the following theorem. 

THEOREM 4.1. Let f(x) be P*-integrable on [a, 6], and let F{x) be 
its indefinite P*-integral. If g(x) is of limited total variation on [a, 6], 
then the product f(x)g(x) is P*-integrable, and 

(4.1) f f(x)g(x)dx = F(b)g(b) - f F{x)dg(x)y 
J a J a 

fie last integral being a Stieltjes integral. 

The function g(x) can be written in either of the forms 

g(x) = gi(x) - &(*). 

g(x) = g*(x) - g4(*). 

where the gi are positive, g\ and g2 are monotonie non-increasing and 
gz and gi are monotonie non-decreasing. Let 0* be a tetrad e-ad-
joined to ƒ on [a, b]. We define sixteen functions by the formulas 

(4.2) f)(x) = 4>\x)gi(x) - f *\*)dgi(x\ ij = 1, 2, 3, 4. 

I t is evident that these all vanish at x = a. If x and x' are in [a, 6], 
we can apply the first mean-value theorem to the integral in (4.2) 
to obtain 

i^(x') - \l/)(x) = 4>\x')gi(x') - <t>\x)gi(x) - (t>\x)[gj(x') - gj(x)] 

(4.3) =g/(*0[*V) -*'(*)] 

where 5 is between x and #' (inclusive). Since <t>1 is continuous and 
gj is bounded, this shows that \p)(x) is continuous. 

Suppose that g'(x) is defined and finite; this is true for almost all 
x. We divide both numbers of (4.3) by x'—x, writing the x'— x 
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under the square-bracketed terms on the right. The second term on 
the right tends to zero, so 

(4.4) D%{x) = g,(*)Z>V(*), 

and likewise for the three other Dini dérivâtes. 
If %7*x equation (4.3) yields 

= gy(o/) ; 
/y» _ _ /y /y — /y 
%/v Jv «/V uv 

( 4 - 5 ) ^ ^ / ^ -
0 (ff) — <j> (x) X — X 

+ (gjW - £*(*'))•- : ; 
/y — /y /y — /y 

This is still valid if £ = #, provided that we assign a value, say 0, 
to the middle factor in the last term. Henceforth we assume that x 
is in the set on which the inequalities in (1.1b) hold; this rejects at 
most a denumerable set of x. Let x' approach x from the right. The 
last factor in (4.5) is non-negative and bounded; so are the factors 
involving gi if j = 1 or 2. If i = 1 the fractions in volving <ƒ> * are bounded 
below, since Z>+0*(#) > — oo ; if i = 4 they are bounded above. Hence 
the left member is bounded below if i — 1, above if i = 4, and 

(4.6) Z > + * î > - o o , Z > V , < o o , 7 = 1,2. 

In a similar way, if x' <x and 7 = 3 or 4 we can establish 

(4.7) D-jfi>-«>, £>">•<«>, 7 = 3,4. 

Now we define 

xfz = x//1 — faf 

if, = xf/s — i / /4 , 

( 4 . 8 ) 3 3 2 
V = ^3 — V4, 

^ = yp\ — fa> 

From (4.6) and (4.7) we find that these satisfy (1.1b). From (4.4), 
together with (1.1b), we find that the inequalities of (1.1c) hold for 
almost all x, and (1.1a) has already been established. 

Since F is the g.l.b. of majors and the l.u.b. of minors, we find 

Ab) ^ F(b)gj(b) - f F(x)dgi(x) ^ *)(b), j = 1, 2. 
J a 

Hence by (4.8) 

(4.9) P(fi) = F(b)g(b) - f F(x)dg(x) = VQ>). 
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Likewise 

(4.10) t\b) ^F(b)g(b) - f F{x)dg{x) ^ >p\b). 
J a 

But 

I *k*) - ti(b) \ = I [*(b) - 4>\b)]gj(b) - f V ( « ) ~ **(*)]<**/(*) I 
J a 

£*[\gi(b)\+\gtf)-gi(a)\], 

and, denoting the coefficient of e by Kj, this implies 
I f Kb) - Vib) | < e{Kx + K2). 

Likewise 

| V(b) - r(b) I < e(Ks + Kt). 

Since e is arbitrary, this implies that with (4.9) and (4.10) all four 
numbers yp^b) lie arbitrarily close to 

F{b)gib) - f F(x)dgtx). 

This establishes the inequality (2.1) of Theorem 2.1, hence proves 
the P*-integrability of f(x) g(x), and also establishes equation (4.1). 

5. Equivalence of the P*-integral and the Perron integral. It is 
evident that every function which is5 Perron integrable on an inter­
val [a, b] is also P*-integrable, and the integrals are equal. For the 
Perron major functions serve simultaneously as right and left majors, 
and the Perron minors serve as right and left minors. 

The converse is less evident. I t requires slight generalizations of 
two known theorems. 

LEMMA 5.1. If F(x) is a function which at all but at most a denumer-
able subset of a set M satisfies one of the inequalities 

D+F < oo, D-F < oo, 

D+F > - oo, D-F > - oo, 

then F{x) is VBG* on M. 
The proof is essentially that given on p. 235 of Saks' Theory of 

the Integral. His equation (10.3) is replaced by 

5 By the Perron integral we mean the integral originally denned by Perron and 
studied by Bauer (loc. cit.); this is called the ^P0 integral by Saks, and is equivalent 
to the <P integral (Saks, op. cit., p. 252). 
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0 <t - x < 1/n implies [F(t) - F(x)]/(t - x) ^ n; 

the remainder of the proof.is unaltered. The next lemma is a slight 
generalization of a theorem of Marcinkiewicz. 

LEMMA 5.2. If f(x) is measurable on [a, b], and has either a left 
major or a right major, and also has either a left minor or a right 
minor, then f (x) is Perron integrable on [a, b]. 

The proof is tha t given by Saks, op. cit., p. 253; the principal 
change is that the reference to his Theorem 10.1 is replaced by a 
reference to our Lemma 5.1. 

Since every P*-integrable function ƒ(#) is measurable and has right 
majors and right minors, it is also Perron integrable by Lemma 5.2, 
and the equivalence of the integrals is established. 

UNIVERSITY OF VIRGINIA 

ON THE LEAST PRIMITIVE ROOT OF A PRIME 
LOO-KENG HUA 

I t was proved by Vinogradow1 that the least positive primitive 
root g(p) of a prime p is 0(2mp112 log p) where m denotes the number 
of different prime factors of p — 1. In 1930 he2 improved the previous 
result to 

g(p) = 0 (2"^ /* log log J) , 

or more precisely, 

<t>Kp - 1 ) 

I t is the purpose of this note, by introducing the notion of the 
average of character sums,3 to prove that if h{p) denotes the primi­
tive root with the least absolute value, mod p, then 

| h(p) | < 2 - ^ / 2 ; 

Received by the editors December 3, 1941. 
1 See, Landau, Vorlesungen iiber Zahlentheorie, vol. 2, part 7, chap. 14. The 

original papers of Vinogradow are not available in China. 
2 Comptes Rendus de l'Académie des Sciences de l'URSS, 1930, pp. 7-11. 
3 The present note may be regarded as an introduction of a method which has 

numerous applications. 


