
ON THE LOGARITHMIC MEANS OF REARRANGED 
PARTIAL SUMS OF A FOURIER SERIES 

OTTO SZÂSZ 

Let f(d) be a real, even and Lebesgue integrable function; let 
oo 

f(ff) ~ (l/2)a0 + X) an cos n$. 

We write 

so = (l/2)a0, sn = (l/2)fl0 + ai + * • • + ön, » S 1, 

and denote by So*, sf, • • • , sn* the values of 
rearranged in decreasing order. In 1935 Hardy and Littlewood [2]1 

proved the following remarkable theorem : 

THEOREM 1. If 

(1) f(0) = oology) ' 

for small positive 0, then 

(2) £-jL^ = o{iogn). 
0 V + 1 

Hardy and Littlewood gave two applications of this theorem by 
proving : 

THEOREM 2. 7/(1) holds, then 

(3) Ê I * |« = *(») 
1 

/or 6^6^ positive q. 

THEOREM 3. /ƒ (1) holds and if 

(4) an > — Anr* 
for a positive A and £, then sn—»0. 

They have also proved [l , Theorem 9] that in Theorem 3 the 
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assumption (1) can be replaced by 

(5) F($) = f I ƒ(/) \dt = o ( \ , 
Jo ' ' \ log (1 /0) / ' 

but the proof requires a very difficult Tauberian theorem. Thus the 
question arose whether Theorem 1 remains true when (1) is re­
placed by (5). 

In partial answer to this question we shall prove the following 
result. 

THEOREM I. If (5) holds and if for small positive 6 

(6) | f (6) I < 0~~c, c a positive constant, 

then (2) holds. 

Note that condition (6) permits f (6) to become as large as any 
power of 1/0 near 0 = 0. 

For the proof of Theorem I we follow the device of Hardy and 
Littlewood. We suppose that \sm\ = ^ , O^ni^n, so that ^o, #i, • • • , 
vn is a permutation of 0, 1, • • • , n. We then have 

o m + 1 T J o 2 sin 0/2 
where 

si _2_ r* 
+ 1 " 7T Jo 

Sm _= 1 C' f(d) 

Sgn Sn 

g{6)d6, 

g(fi) = L - s — r s i n {m + 1/2)d-
0 ?>m + 1 

We choose ô so that (6) holds for 0 < 6 < 5, and write 

.1/» / . * /• x \ ƒ(#) 

«..i/p+f+fY 
7T \ J o •/ 1/n •/ « / Ï 

*(*)<» 
sin 0/2 

= / i + /a + /s, Ô < 1 < ». 

We first estimate 2i : 

i . r1,n \f(fi)\ i i r 1 M i I / A W + I / 2 \ 

•/ 0 6 J0 \ 0 »m + 1 / 
(7) 

â(fi + i/2)( E - — ) l /w l^ î 

hence, by (5) 

lx — o(l) as n —» oo. 
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Next 

where 
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A sgnsm . 
JL ——-J* 
o vm + 1 

= — f *-
IT J 8 SI 

ƒ(*) 
s sin 0/2 

sin (m + l/2)6dS. 

To any given e > 0 we can choose, by the Riemann-Lebesgue theo­
rem, m0(e) so that \jm\ <e for m^m 0 . Then 

h\ < 
1 1 

(8) 

< 

T sin 5/2 

m0 + 1 

7T s in 6 /2 J § 

/

7T mo 1 n 1 

|/(9)|do. X - — - + 6 E — -
j 0 Am T" 1 mQ Vm -\ 

fr\f(8)\dd + e log (» + 1), 

hence Iz = o (log w), as n—> oo . 
Theorem I is now reduced to showing that jr2 = 0 (log n). We have 

from Young's inequality [2, p. 319] 

uv S lu \og+ u +le^v~l)l1 

for w>0, / > 0 , and all real v. Here log + ^ = max (0, log u). We take 
u = |/(0)/sin 0/2 | , i; = | g(0) | , I = 2 ; then 

/« < 
2 r 5 I /(^) 

i / Js in 0/2 
log+ 

sin 0/2 7T • / 1/ TT • / l/w 

= K + L9 

Now from (6) 

say. 

log+ 1 < log •wB-'-' < (c + 1) log —, 
sin 0/2 

hence 

K£2(c+1) f \f(fi)\e-i log ^M. 
J 1/n 0 1/n 

Integration by parts yields 

(9) K ^ 2(c + WFWo-1 log — + f F($)d-2< log— + l\dd\, 

and (5) gives K — o (log n). 
Finally, to estimate L, we use the following two lemmas (cf. 

Hardy and Littlewood [2]) : 
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LEMMA A. If 

n n 

4>(6) = Y, «.«"', 4>+(0) = Z cfeM, 
—n —n 

where c* are the numbers \cv\ rearranged so that c^^ct1^ct^ct2'^: 
• • • ; then 

eb\<f>(e)\dd ^ 2 I eh\*+w\dd, for every b > 0. 

LEMMA B. | ] C ï c o s v6/(v + l)\ <log ( l / | 0 | ) + c / o r a// 6 and n, and 
a constant c>0. 

Now, if we put 

sgnsw 

Vm + 1 
we have 

= Pm, 

where 

7(0) = Z P^ i m Ö 

o 

is a polynomial of degree w whose coefficients have (in some order) 
the absolute values 1, 1/2, • • • , l/(n + l). Hence, in the notation of 
the above lemma. 

7+(0) = i + e-ie/2 + eid/3 + e~2id/i + • • • , 

the last term having modulus l/(n + l) and an argument depending 
on the parity of n. The imaginary part of Y+(0) is bounded in n and 
0, and the modulus of the real part is less than log ( l / | 0 | ) + £ , c a 
positive constant, due to Lemma B; hence | Y + ( 0 ) | <log ( l / | 0 | ) + o . 
We now obtain 

(10) L < 
7T J o «̂  0 J 0 

the theorem now follows from (7), (8), (9), and (10). 

THEOREM I I . To a given S > 0 denote by *>(S, n) the number of values 
m for which m^n, \ sm\ > S ; then log v = o (log n) as n—><*>. 
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We have 

8 log v < ]T) ^ 0(l°g n), from (2); 
o m + 1 

8 being fixed our theorem follows [2, Theorem 3]. 

THEOREM I I I . 7/(5) holds then sn = o (log log n). 

The proof is straightforward, using 

1 r*f(0) sin (n+ 1/2)6 

-f d0. 
' o sin 0/2 

We have 

< H / ( f l ) | l sin (n + l/2)g| dQ= r1'" f6
+ CT 

J o 0 J o J l/n J 5 
*n 

where we choose ô = 8(e) so that 
e0 

F(0) < for 0 < 0 < 8. 
log 1/0 

Now-4 i<(» + l / 2 ) F ( l / w ) = o ( l ) asn->*> ; 

I /(0) I 0-^0 = F(0) • 0-1 + I F(0) • 0-2^0 
l/n J l/n J l/n 

€ rb do e in 
< 1_ € I = (- € Jog l0g 

log 1/8 J 1/n 0 log 1/0 log 1/8 0 _h 
< e/log 1/8 + e log log n. 

Hence for fixed e and S 
A* 

hm sup S e; 
n->°o log log n 

but e is arbitrarily small, thus Ai — o (log log n). Finally 

Az < 8-1 f | /(0) | d0 = ©(log log n); 
Jo 

this proves Theorem I I I . 

THEOREM IV. Denote by <j>(x) a function satisfying the conditions 
</>(0) =0 , cj>{x) t , as # î ; 0(#) <exp (eca;) /or all x>0; c a positive 
constant. Under the assumptions of Theorem lj^Jl<p(\sm\) =o(n). We 
may say the sequence {sn} is strongly summable relative to <t>(x). 
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We write for a given ô > 0 

2>(|*«|) = E + L ^Bx + B2; 
1 l«ml<* \sm\^8 

then Bi<n<l>(ô). By Theorems II and III we may write 

\sn\ = €n log log », log v = rjn log », where e„ —> 0, rjn —> 0. 

Now 

^2 < v(j>{€n log log ») < »^-exp {(log »)ce»} = o(n), 

hence 
1 * 

lim sup— £ *( | sTO | ) ^ *(5), 
n-»oo » x 

letting ô—>0 our theorem follows. 

THEOREM V. The assumptions (4), (5), and (6) imply sn—*0. 

This follows from Theorem I I ; see the proof of Theorem 5 in [2]. 
Final remark. In the more general case, when 

oo 

/(0) ~ (l/2)a0 + S (ön cos «0 + 6n sin »0), 
i 

and when the point under consideration is 00, we use the familiar 
reduction. We have 

00 

(1/2) {f(do + 0) + f (do - 0)} ~ (l/2)ao + Z «n cos «0, 
1 

where 

oin = #n cos nd0 + 6W sin »0o, n ^ 1. 

Suppose there is an 5, for which 

f |/(Öo + /) + / ( ö o - O - 2*| * = of- — Y as0-*O, 
J o Mog 1/0/ 

and 

| /(0o + 0) + /(0o - 0) - 2s | < 2 | 0~c | for small | 0 |. 

Then application of Theorem I yields : 

1 

0 » + 1 
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where s„*(0o),# = O, 1, • • • , n, is the sequence |sv(0o)--s| in decreasing 
order. 
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THE BASIC ANALOGUE OF KUMMER'S THEOREM1 

J. A. DAUM 

1. Introduction. About one hundred years ago, E. E. Kummer2 

proved the formula 

ra% b; - q r(i + a - b)r(i + a/2) 
Ll + a-b J r ( l + ö)r ( l + a/2 - b) 

which has since been known as Kummer's theorem. This appears to 
be the simplest relation involving a hypergeometric function with 
argument ( — 1). 

All the relations in the theory of hypergeometric series rF8 which 
have analogues in the theory of basic series3 are those in which the 
argument is ( + 1 ) . Apparently, there has been no successful at tempt 
to establish the basic analogue of any formula involving a function 
rF8( — l). Since Kummer's theorem is fundamental in the proofs of 
numerous relations between hypergeometric functions of argument 
( — 1), it seemed desirable that an at tempt be made to prove the basic 
analogue of Kummer's theorem and to investigate the possibility of 
obtaining new relations in basic series with arguments corresponding 
to the argument ( — 1) in the classical case. 

In this paper, the basic analogue of Kummer's theorem is obtained 
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