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INVERSES AND ZERO-DIVISORS 

REINHOLD BAER 

It may happen that an element in a ring is both a zero-divisor and 
an inverse, that it possesses a right-inverse though no left-inverse, 
and that it is neither a zero-divisor nor an inverse. Thus there arises 
the problem of rinding conditions assuring the absence of these para­
doxical phenomena; and it is the object of the present note to show 
that chain conditions on the ideals serve this purpose. At the same 
time we obtain criteria for the existence of unit-elements. 

The following notations shall be used throughout. The element e in 
the ring R is a left-unit for the element u in R, if eu = u ; and e is a left-
unit for R, if it is a left-unit for every element in R. Right-units are 
defined in a like manner; and an element is a universal unit f or R, if 
it is both a right- and a left-unit for R. 

The element u is a right-zero-divisor, if there exists an element v ^ 0 
in R such that vu = 0 ; and u is a right-inverse in R, if there exists an 
element w in R such that wu is a left-unit for u and a right-unit for R. 
Left-zero-divisors and left-inverses are defined in a like manner. Note 
that 0 is a zero-divisor, since we assume that the ring R is different 
from 0. 

L(u) denotes the set of all the elements x in R which satisfy xu = 0; 
clearly L(u) is a left-ideal in the ring R and every left-ideal of the 
form L(u) shall be termed a zero-dividing left-ideal. Principal left-
ideals1 are the ideals of the form Rv for v in R and the ideals vR are 
the principal right-ideals. 

Presented to the Society December 31, 1941; received by the editors September 
19, 1941, and, in revised form, October 13, 1941. 

1 This is a slight change from the customary terminology. 
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LEMMA 1. If vu is a left-unit for u and a right-unit for R} then uv = vu, 
Rv—R and L(u) = 0 are equivalent properties. 

PROOF. HUV = VU, then R = Rvu = Ruv SRv ^R, or R = Rv. If R = Rv, 
and if xu = 0, then there exists an element y in R such that x=yv\ 
and L(u)=0 is a consequence of y=yvu=xu = 0. If L(u)==0 then 
(vu — uv)u—vuu — uvu = u — u = 0 implies that vu — uv is in L(u) and 
that therefore vu — uv. 

EXAMPLE 1. Let G be the additive group of all the countably infinite 
sequences of numbers from the commutative field F, considered as an 
abelian operator group over F\ and denote by R the ring of all the 
inadmissible automorphisms of G (that is, of all the linear transforma­
tions of G over F). Elements u, v, w in R are defined by 

Oi, • • • )u = (0, au • • • ), (ai, . - . ) • = (fll, 0, • • • ), 

(f l l . * * * )W= (02 , 08, • • • ) 

and they satisfy uv = 0, uw—lf WUT^I. Thus a left-inverse may be a 
left-zero-divisor. 

LEMMA 2. Each of the following properties of the ring R implies all 
the others. 

(i) There exists a universal unit in R. 
(ii) There exists a right-unit for R, and x = 0 is a consequence of 

Rx = 0. 
(iii) There exists one and only one right-unit for R. 
(iv) There exist a right-unit for R and a left-unit for R. 

PROOF, (ii) is an obvious consequence of (i). If (ii) holds, and if u 
and v are right-units for R, then x(u — v) —xu— xv = 0 for every ele­
ment x in R; thus u—v and (iii) is an implication of (ii). If (iii) holds, 
if e is the uniquely determined right-unit for R, and if x and y are 
elements in R, then x(e+y — ey)—xe+xy—xey = x+xy — xy = x for 
every x in R. Thus e+y — ey is a right-unit for R; and the equality 
of all right-units implies that y — ey, that is, that e is also a left-unit 
for R; and (iv) is therefore a consequence of (iii). If (iv) holds, then 
there exist a right-unit u and a left-unit v for R; and (i) may be in­
ferred from u—vu=v. 

The importance of condition (ii) may be seen from the fact that 
the elements x in R which satisfy Rx = 0 form a two-sided ideal T 
whose square is 0. 

LEMMA 3. If the minimum condition is satisfied by the principal left-
ideals in the ring R, if J is a principal left-ideal in R and if Jv — R 
for v an element in R, then J — R. 
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REMARK. Omitting the word "principal" throughout we obtain a 
true statement that may be proved in a similar fashion. 

PROOF. If R = Jv for J a principal left-ideal and v an element in R, 
then there exists a smallest principal left-ideal S~Rs such that R = St 
for some t in R. Hence s = rst for r in R. Since Rrs^Rs = S, and since 
{Rrs)t2 = R(rst)t = Rst — St = R, it follows from our choice of 5 that 
Rrs = 5 ; and hence S~Rs= Rrst — St = R, a fact which proves our con­
tention. 

THEOREM 1. The element z in the ring R with minimum condition for 
principal left-ideals is a right-inverse in R if, and only if, z is not a 
right-zero-divisor in R. 

PROOF. Assume first the existence of an element v in R such that vz 
is a left-unit for z and a right-unit for R. Then J = Rv is a principal 
left-ideal and it follows from Lemma 3 and the equation Jz = Rvz = R 
that R = J = Rv; and hence it follows from Lemma 1 that z is not a 
right-zero-divisor. 

If there exist elements in R which are not right-zero-divisors, then 
among these elements there is one, say v, with minimal (principal left-
ideal) Rv. Since xv2 = 0 implies xv = 0, and since this implies x = 0, it 
follows that v2 is not a right-zero-divisor. Thus Rv2SRv and the mini­
mum property of Rv imply Rv2 — Rv. Hence for every element r in R 
there exists an element r' in R such that rv ~ r'v2 or (r — r'v)v = 0. Since 
v is not a right-zero-divisor, r — r'v = 0 or r — r'v. Thus we have shown 
that R = Rv; and this fact makes it evident that R = Rz for every z 
which is not a right-zero-divisor in R. 

If the element z in R is not a right-zero-divisor in R, then R = Rz; 
and there exists therefore one (and only one) element e in R such 
that ez = z. Since (r — re)z = rz — rz = 0 for every r in R, it follows that e 
is both a left-unit for z and a right-unit for R. Since the existence of 
an element w satisfying wz = e is a consequence of R — Rz, it has been 
shown that z is a right-inverse in R. 

An immediate consequence of this theorem is the following fact. 

COROLLARY. The ring R with minimum condition for principal left-
ideals contains a right-unit for R if {and only if) at least one element 
in R is not a right-zero-divisor. 

The impossibility of substituting the maximum condition for the 
minimum condition in Theorem 1 and its corollary may be seen from 
the example of the even rational integers. The example of the ring of 
all the matrices 
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CO 
with coefficients from some commutative field shows that the condi­
tions of the corollary are not sufficient for the existence of a universal 
unit. 

THEOREM 2. If there exists a universal unit 1 in the ring R, if the 
minimum condition is satisfied by both the principal right- and the prin­
cipal left-ideals in R, then each of the following properties of the element z 
in R implies all the others : 

(a) z is not a right-zero-divisor. 
(b) z is a right-inverse. 
(c) z is not a left-zero-divisor. 
(d) z is a left-inverse. 

That (b) implies (c) and that (d) implies (a) are obvious conse­
quences of Lemma 1 ; and that (a) implies (b) and that (c) implies (d) 
may be inferred from Theorem 1 and Lemma 2. 

The impossibility of substituting maximum conditions for the mini­
mum conditions in this theorem may be seen from the example of the 
ring of all the rational integers. 

THEOREM 3. If the minimum condition is satisfied by the principal 
left-ideals and by the zero-dividing left-ideals in the ring R, then R = Rz 
is a necessary and sufficient condition for z to be a right-inverse in R. 

PROOF. If z is a right-inverse in R, then vz is for some v in R a right-
unit for R and R = Rvz^Rz^R or R = Rz. 

If, conversely, R = Rz, then z — ez for some e in JR. The principal 
left-ideal J —Re satisfies Jz = Rez = Rz = R. Hence it follows from 
Lemma 3 that R = Re for every left-unit e of the element z. 

Among the left-units for z there exists one, say/ , with minimal L(J). 
Then it is a consequence of R = Rf that f — gf for some g in R. Since 
gz=g(fz) = (gf)z —fz~z^ and since xg — 0 implies 0=xgf = xf, it follows 
that g is a left-unit for z and that L{g) ^L(f). Hence L(g) —L(f) is a 
consequence of our choice of/. Since (g2—g)f=:f—f = 0, the element 
g2 — g is in L(f) =L(g) so that (g2 — g)g = 0 or gz = g2. Consequently the 
element e=g2 satisfies e2 = g4 = g3 = g2 = e and ez = g2z = z, that is, the 
element e is an idempotent and a left-unit for z. Thus e is an idem-
potent satisfying R = Re (as has been shown in the second paragraph 
of the proof) ; and the left-unit e for z is therefore a right-unit for R. 
Finally there exists an element w in R such that wz = e, since R = Rz; 
and this completes the proof of the fact that s is a right-inverse in JR. 
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The following fact is an immediate consequence of Theorem 3. 

COROLLARY. The ring R with minimum condition for principal and 
for zero-dividing left-ideals contains a right-unit for R if, and only if, 
Ris a principal left-ideal in R. 

As an application of the preceding results we prove the following 
statement. 

The ring R is a (not necessarily commutative) field if, and only if, 
(a) 0 is the only right-zero-divisor in R, 
(b) the minimum condition is satisfied by the principal left-ideals 

in R. 
It is obvious that the two conditions are necessary and that neither 

of them could be omitted. If the conditions (a) and (b) are satisfied 
by R, then every element 3 ^ 0 in R is a right-inverse by Theorem 1. 
Since R contains therefore a right-unit for R, it follows from Lemma 2 
that R contains a universal unit 1 ; and it follows from Lemma 1 that 
every element z^O in R is both a right- and a left-inverse. Hence R 
is a field. 

LEMMA 4.2 If the maximum condition is satisfied by the zero-dividing 
left-ideals in the ring R, if the left-ideal J and the element z in R satisfy 
Jz = R, then L(z) = 0 and J = R. 

PROOF. If R = Jz for some left-ideal J and some element z in R, 
then among these elements z there exists one, say w, with maximal 
L(w). If W is some left-ideal such that R = Ww, then R = Ww^Rw 
= Ww2 ^ R or R — Ww2. Hence it follows from our choice of w and the 
obvious inequality L(w) ^L(w2) that L(w) = L(w2). Every element in 
L(w) has the form x—yw for y in W, since R = Ww. If yw is in L(w), 
then y is in L(w2) = L(w), yw = 0 and consequently L(w) = 0. Thus we 
have shown that L(z) = 0 whenever R~Jz for some left-ideal J in R. 

If Jz — R, then for every element r in R there exists an element j 
in the left-ideal / such that jz — rz. This implies j = r, since z is not a 
right-zero-divisor. This completes the proof of the fact that / = R and 
L(z) = 0 are consequences of Jz — R. 

THEOREM 4. Suppose that the maximum condition is satisfied by the 
zero-dividing left-ideals in the ring R. 

(a) uv is a right-unit for R if, and only if, vu is a right-unit for R. 
(b) The right-unit vu for Ris a left-unit for u if, and only if, uv — vu. 
(c) R contains a right-unit (for ^) if, and only if, R is a principal 

left-ideal (in R). 

PROOF. If vu is a right-unit for R, then R = Rvu; and it follows from 
2 Cf. Lemma 3. 
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Lemma 4 that L{u) = 0, Rv = R, L(v) = 0, Ru~R. If r is any element 
in R, then (r — ruv)u = ru — ru(vu) =ru — ru = 0. Since L{u) = 0, we find 
that r = n f̂l for every r in i£. This proves (a) ; and (b) may be obtained 
as an immediate consequence of Lemma 1. If R = Rz for some z in R, 
then it follows from Lemma 4 that L(z) = 0. Furthermore, there exists 
an element e in R = Rz such that z = ez. If r is any element in R, then 
(r — re)z = rz — rz = 0. The element e is a right-unit for i£, since L(z) =0 
implies r = re for every r. This completes the proof of the theorem. 

THEOREM 5. If there exists a universal unit 1 in R, if the minimum 
condition for principal left-ideals or the maximum condition for zero-di­
viding left-ideals is satisfied in R, then the relations uv = \ and vu = l 
imply each other. 

PROOF. If the maximum condition is satisfied by the zero-dividing 
left-ideals in R, then our contention is an immediate consequence of 
Theorem 4, (a) and Lemma 2. If the minimum condition is satisfied 
by the principal left-ideals in R, then uv = 1 implies L(u) = 0. By Theo­
rem 1 there exists an element w such that wu = l. But w — wuv=v so 
that vu = wu = 1. 

The impossibility of omitting the chain conditions in Theorem 5 
is a consequence of Example 1. 

The following special case of Theorem 5 may be worth mentioning, 
since it solves a problem of importance in the theory of matrices.3 If R 
is a ring with universal unit 1, then denote by Rn the ring of all square 
matrices with n rows and n columns whose coefficients are in R. If 
the maximum (minimum) condition is satisfied by the left-ideals in JR, 
then the same condition holds in Rn; and hence it is a consequence of 
Theorem 5 that the matrices A and B in Rn satisfy either AB = 1 and 
BA = 1 or neither of these relations ; in particular it is impossible that 
a matrix in Rn is both a zero-divisor and an inverse in Rn. 

A right- or left-ideal / in the ring R is termed nilpotent, if /* = 0 
for some positive integer i. The sum P = P(R) of all the nilpotent 
right- and left-ideals in R is a two-sided ideal in R which is called 
the radical of R. Hopkins4 has shown that the radical itself is nilpo­
tent, if the minimum condition is satisfied by the left-ideals in R. 

THEOREM 6. There exists a left-unit^ for the ring R with minimum 
condition for left-ideals if, and only if, 

3 Cf., for example, B. L. van der Waerden, Moderne Algebra, vol. 2, Berlin, 1927, 
pp. 114-115. 

4 C. Hopkins, Annals of Mathematics, (2), vol. 40 (1939), pp. 712-730; Theorem 
1.4, p. 714. 

5 Note that the preceding criteria assured the existence of right-units for the ring R. 



636 REINHOLD BAER [August 

(i) Rx = 0 implies x = 0, 
(ii) PlRx = xP = 0 implies Plx = 0 for 0<i<m (where m is the small-

est positive integer such that Pm = 0). 

PROOF. If R contains a left-unit for every element then x is always 
an element of Rx; and this shows the necessity of conditions (i) and 

Suppose that conditions (i) and (ii) are satisfied by the ring R. 
From the choice of the integer m it follows that 0 = P m < P m _ 1 (using 
the notation P° = R). If x is an element not 0 in Pm~x, then Px = 0 so 
that P <R is a consequence of condition (i). Hence6 there exists in R 
an idempotent e 9^0 such that R = Re+P. 

Denote by T the set of all the elements x in R which satisfy : xP = 0 ; 
and denote by S(i) (for positive i) the set of all those elements in T 
which satisfy: P*x = 0. Clearly T and therefore every S(i) is a two-
sided ideal in R. We are going to prove by complete induction that 
eS(i) =S(i). This is true for i = 1, since it follows from Rx — Rex-\-Px 
and condition (i) that x = 0 is the only element x in 5(1) which satis­
fies ex = 0. Suppose now that S(i) =eS(i) and that the element t in 
S(i+1) satisfies et = 0. Then Rt = Ret+Pt = Pt^PS(i+l) ^S(i), 
ptRt^PtSii) = 0; and it follows from condition (ii) that PH = 0. The 
element t is therefore an element in S(i) —eS(i), that is, t = et = 0 or 
S(i-\-l) = eS(i+l); and this completes the induction. In particular it 
follows that T = eT, since T = S(m) is a consequence of P m = 0. 

Denote by T(i) the set of all the elements x in R which satisfy 
xPi = 0. Every T(i) is a two-sided ideal in R. We are going to prove 
by complete induction that T(i)=eT(i). This is true for i = l, since 
T= T(l). Suppose that T(i) =eT(i) and that the element v in P(i + 1) 
satisfies ev = 0. Then vP = 0, since vP^T(i) =eT(i) and ev = 0. Thus v 
is an element in T — eT and v = ev = 0. This shows that T(i-\-l) 
= eT(i-{-l); and this completes the induction. Since P m = 0 implies 
T(m)=Ry we have proved in particular that R = eR; and the idem-
potent e is therefore a left-unit for R. 

We note that we proved the following fact. If the conditions (i) 
and (ii) of Theorem 6 are satisfied by the ring P , if the radical of R is 
nilpotent, and if the idempotent e in R satisfies P = P e + P , then e is a 
left-unit for P ; and we mention that the minimum condition for zero-
dividing left-ideals would be sufficient to assure the existence of such 
an idempotent e. 

One verifies readily that the conditions (i) and (ii) of Theorem 6 
are consequences of each of the following (not necessary) conditions 

6 Cf. Hopkins, loc. cit., Theorems 4.1, 4.2, p. 721. 
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(a) P = 0; (b) condition (i), and xP = 0 implies Px = 0; (c) condition 
(i), and RP^PtR. 

That condition (ii) is indispensable for the validity of Theorem 6 
may be seen from the following example. Denote by R the ring of all 
the matrices of the form 

( a 0 0 ] 

6 0 0 

{ c d e J 

with coefficients from some (commutative) field F. I t is readily veri­
fied that Rx = 0 implies x = 0 ; that yR = 0 implies y = 0 ; and that this 
ring R does not contain a universal unit 1. We note that R would be a 
finite ring, if F were a finite field. 

COROLLARY. There exists a left-unit for the ring R with minimum con­
dition for left-ideals if (and only if) there exists a left-unit for every ele­
ment in R. 

PROOF. The existence of a left-unit for the element x in JR is equiva­
lent to the fact that x is an element in the left-ideal Rx. This shows 
that the conditions (i), (ii) of Theorem 6 are consequences of the con­
dition of the corollary. 

THEOREM 7. There exists a universal unit in the ring R with minimum 
condition for left-ideals if, and only if, 

(1) Rx = 0 implies x = 0, 
(2) yR = 0 implies y = 0, 
(3) RP = PR. 

PROOF. The necessity of the conditions is obvious. If the conditions 
are satisfied by R, then it follows from (1), (3) that conditions (i), (ii) 
of Theorem 6 are satisfied. Hence there exists a left-unit e for R; and 
it follows from Lemma 2 and condition (2) that e is a universal unit 
for R. 

COROLLARY. There exists a universal unit in the commutative ring R 
with minimum condition for ideals if, and only if, Rx — 0 implies x = 0. 

This is an immediate consequence of Theorem 7. 
The impossibility of substituting the maximum condition for the 

minimum condition in Theorems 6 or 7 may be seen from the ex­
ample of the even rational integers. 

Comparing the results of this investigation one sees that minimum 
conditions are more powerful than maximum conditions. This phe-
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nomenon is closely connected with Hopkins' theorem :7 If the ring R 
contains a left-unit or a right-unit for R, then the maximum condition 
for left-ideals in R is a consequence of the minimum condition for left-
ideals in R. We could not make use of this theorem, since we usually 
considered rings with minimum (maximum) condition for principal 
or zero-dividing left-ideals. On the other hand it is possible to improve 
slightly the theorem of Hopkins by applying our criteria for the exist­
ence of units. 

I t is well known that the commutative law of addition is a conse­
quence of the customary postulates for a field, but not of the analo­
gous postulates for a ring. To investigate this situation we consider 
a nonvacuous set R of elements which are connected by two opera­
tions: addition u+v and multiplication uv, subject to the following 
rules : 

I. R is a group under addition. 
II . The product uv of the elements u and v in R is a uniquely de­

termined element in R. 
I I I . u(v-\-w) =uv+uw, (u+v)w = uw+vw. 
We denote by R2 the subgroup of the additive group R which is 

generated by all the products uv and by C = C(R) the commutator 
subgroup of the additive group R. Both R2 and C are two-sided ideals 
inR. 

The addition is commutative in R2, and CR = RC = 0. 

PROOF. If a, b, c, d are elements in R, then it follows from the dis­
tributive laws that 

ad + ab + cd + cb = (a + c)(d + b) = ad + cd + ab + cb; 

and hence it follows from the cancellation law of addition that 

ab + cd = cd + ab. 

Our contention is an immediate consequence of this equality. 
I t is now obvious that each of the following two conditions is suffi­

cient to assure commutativity of addition. 
(a) R = R2. 
(b) 0 is the only element in R which satisfies both Rx = 0 and 

xR = 0. 
We note that each of these two conditions is necessary, but not 

sufficient for the existence of a universal unit in R. 

UNIVERSITY OF ILLINOIS 

7 Hopkins, loc. cit., Theorem 6.7, p. 728. 


