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(0) and (L) (§1I, Theorem 2), the sphere (G) having G for center and
orthogonal to (Q) (§1I, Theorem 1) is the second sphere of anti-
similitude of (0) and (L) ; hence (G) is coaxial with these spheres.

THEOREM 3. The four spheres having for centers the vertices of a
tetrahedron and orthogonal to the quasi-polar sphere cut the spheres
having for diameters the respective medians of the tetrahedron along
Sfour circles belonging to the same sphere, namely, the (G)-sphere of the
tetrahedron.

The sphere (4) having 4 for center and orthogonal to the sphere
(Q) is coaxial with the spheres (G) and (4G,), for the centers of these
three spheres are collinear and all three are orthogonal to (Q). Simi-
larly for the vertices B, C, D of (T).
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EUCLIDEAN CONCOMITANTS OF THE TERNARY CUBIC
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1. Introduction; construction of concomitants. In this paper we use
the results of Cramlet [1] and the writer [2] to study the euclidean
concomitants of the ternary cubic curve

Tawp XXX = 0,

where a, b, c=1, 2, 3 and T, is symmetric. With tensor algebra as
the medium of investigation all types of concomitants are readily con-
structed, and their geometric interpretations are also readily made in
most cases. As is conventional in classical invariant theory, the word
concomitant will be used as meaning rational integral concomitant
unless stated to the contrary.

As a consequence of Theorem 3 in [2], we have the following theo-
rem.

THEOREM 1. Every euclidean concomitant of the ground form
Tapc X X?X¢ (a, b, c=1, 2, 3) is expressible by composition as a tensor
of order zero with the use of the coefficient tensor T e, the variable coordi-
nate tensors X and U,, and the numerical tensors €**°, L,, and E°.
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The tensor €. will not appear here since we are dealing with a
ground form in X¢. In detail,

1 0 0
Lo=10,0,1], E®*=|0 1 0
0 00
It is convenient to introduce the tensor 4%, where
010
A = evel, =| —1 0 0
0 0 O

Theorem 3 of [2] is the first fundamental theorem of euclidean in-
variant theory in tensor form, and Theorem I above is the particular
form of it which we need here; this theorem constitutes a basis for the
construction of concomitants.

2. Reduction of concomitants. In[2] an algebraically complete sys-
tem of euclidean invariants for the cubic T, X*X?X°=0 is given in
tensor form. For the conic Cop X ?X® =0 the familiar algebraically com-
plete system of three invariants is also an irreducibly complete sys-
tem. But this is not true for the cubic. In this paper we shall find an
irreducible system, complete through the fifth degree, of euclidean
invariants for the cubic, and shall investigate geometric interpreta-
tion of these invariants in connection with other concomitants of the
ground form. It is generally recognized that the problem of reduction
of concomitants is more difficult than the problem of construction.
See H. Weyl [3].

It is of interest to note that between the simple case of the conic
and the situation for the general cubic is that of the degenerate cubic
considered as the line B,X*=0 and the conic C;;X*X?=0. They have
the irreducibly complete system of eight invariants

I, = B.B,E®, I = CatCeaCopecce®¥, I3 = CapCeadocAde,
I4 = CabEab’ 15 = CabEachdBch, Ie = CMdee'”’ee“’fBng,
I7 = CuCq€%¢A4B,, Is = CopA*E*2B,Bg.

Six of these are algebraically independent; they may be chosen as

I, - - -, Is; then Iy and I are expressible in terms of them by means
of the syzygies

3([7)2 = 31316 - 211[2[4 - 2[2[5,
(Is)2 = I1I4I5 —_ ([5)2 o %(11)213.
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The five invariants I, I3, I, I7, and C,pA4%°4%¢B.B, form an irreduc-
ibly complete system of affine invariants for the line and conic. They
were studied recently by Weitzenbsck [4], who used the symbolic
notation of his text [5].

We now state the second fundamental theorem in the detailed and
explicit tensor form needed to investigate the relations on the con-
comitants constructed in accordance with the first fundamental theo-
rem.

TueoreM 11. Every identity satisfied by the concomitants constructed
by the first fundamental theorem for a set of ground forms in X* can be
established with the basic identities:

Iden 1. efleEdG EedbcEae_{__eachbe_i_eadece'
Iden 2. e®cX?  =edbe)XafgadeXbf eabd e,
Iden 3. esbcedes = edbegaes | gadegbes | gabdgoes
Iden 4. A%4cd =FEocEbd— Fedfbe

Iden 4'. EecEbd  =Aob4cd{ Fadfbe

Iden 5. Ae*Ecd =ActEod{ focFbd

Iden 6. A**Xc¢ =AbXot acXbteade] X
Iden 7. Adbecde =4 cbeardef 4acebdef gabegde
Iden 8. esbcdde  ==edboqoc gadofbet gabd g ce
Iden 9. Ae®4cd =Acdbgaodf fJacqbd

Iden 10. EebFcder EEabEc/Eed_'_EudEche/ —_ EadchEeb — Ea/Eched
+ E4EE®,

Iden 1 1 . XaEbcEds = XaEbeEde+EachEde _EacheXd _EanbEdc
+EaeEchd+ éabdA“Lij.

Iden 2 may be established by expanding

81 82 8 X
o o6 b X |
s s x0T
e
and using
81 8 b3
eate = | 8, b5 by |.
8 8 0,

Most of the other identities are consequences of Iden 2 in rather obvi-
ous ways. We remark briefly about some not of this class. To obtain
Iden 4 consider
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ac ad

E E

be bd

E E

o 8y

c d
02 0y

a a
4P o e \ 511, 5§
01 09

Iden 10 may be obtained from the determinantal product

57 &5 o3| |61 61 o1
5 on 89 || 05 8 oh|=o0,
81 05 03 0 0 0
and Iden 11 from
50 on sl |6y 6 X
5 o oy |- |8 8 X |=eTAMLX

5 o o% 00 Xx

That these identities constitute a reduction basis for the concomi-
tants constructed by the first fundamental theorem may be seen by
observing that they give the alternate ways of writing all types of
products which arise.

3. Anirreducible system, complete through the fifth degree, of eu-
clidean invariants for the cubic T, X X X°. We note that the cubic
has only one ‘“formal’’ invariant of the first degree, T..€%*°, and this
vanishes identically due to the skew-symmetry of €**¢; so (i) for the
cubic there is no invariant of the first degree.

We can construct three (and only three) invariants of the second
degree:

A= TalazaaTblbgbaE“W?Eblb?E“aba, B = TalazaaTblb;,szalblEazszasbs,
C = TﬂlagaaTblbzbaA atb14 azb2 Fasbs

Invariants as Tajaga,Tb;550,4%02A4 22495 and Ty a0, o,0,0,4 2102EP102F0sbs
which vanish identically on the interchange of equivalent indices are
not listed here, nor in similar circumstances in the future. In this con-
nection one should keep in mind the skew-symmetry of e**¢ and of
A9 The only identities applicable to 4 and B are Idens 4’ and 10.
The application of the latter to each of these merely gives 4 =4 and
B=B. The application of Iden 4’ to either of them results in
C=A —B. The only identities applicable to C are Idens 4 and 5. The
first results in the relation just given, and the latter in C=C. Thus
C=A —B is the only relation on the invariants 4, B, C. Therefore,
(ii) for the cubic there are two irreducible invariants of the second
degree, and these may be chosen as
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III = TalagagTblbgbsEalazEblszaabsy II? = Tala2a3TblbgbaEalblEazszaaba-
Often we shall use the contracted notation

T = TaualzﬂlsTanana% e Taklakzuka'

To illustrate, I[,= T - E*122Eb1b2Fasbs,
There are three invariants of the third degree to consider:

A = (3 T . A a1b1Eb201A czazeaabacs, B = (3 T . EalchblbaA czazeasbac;g’
C = (3T - Anb14bre1f czaz¢asbscs,

Applying Iden 5 to A<z*2EMb2 of B, we get B=—A —A,or B=—24.
Applying Iden 4 to 41514 %21 of C, we obtain C=4 — B. On applica-
tion of the appropriate reduction formulas in all possible ways to
A, B, C, itis found that there is no relation on these expressions other
than the two given. Hence: (iii) For the cubic there is one irreducible
invariant of the third degree, and this may be chosen as

TTT = (1/6) TayagasToipgps T opencsA 1014 21914 a262¢0303cs,

The number of formal invariants which one can construct increases
rapidly as the degree goes beyond three. Their consideration is facili-
tated by considering all invariants of a certain type together. (iv-1)
For the cubic there is only one invariant of the fourth degree which
contains the numerical tensor e** four times, and this is irreducible,
it being the well known projective invariant of the fourth degree

IV, = (4)T.ealbxqeazbzdxeaaczdgebacsda.

There are six invariants of the fourth degree which contain factors
like e®®¢ twice, the remaining factors being like E®?:

A = @ T - ¢a1biergasdbacs [ragdi [rbsde fes dsy = (4 T. ea1b1clea2bzczEaabsEcad:Edzds’
C = @ T - eo1breighbzcedi [razas [rbscs Jr d2 ds, D = @ T - earbicigbacedl Fazaes [rbsds fres da’
E = @ T - earbreigbzcadi Fazds as daEbacs, F = @ T - eorbiergbzcady [agbs [resde Frasds,

Applying the basic identities in all possible ways, we find that these
invariants are connected by the relations

A=D+2F; B=E+4+2F; B=C(C+2D; C=2D+E —2F;

and only these. Therefore: (iv-2) For the cubic there are two irreduc-
ible invariants of the fourth degree which contain factors like e®®°
twice, the remaining factors being like E?, and these may be chosen
as
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I'V2 = T- 6a1b1clebzcz d1 Fraza3 [ibses [ de ds’

IV; = (4)]‘.ealblclebzczdlEazszcsdzEasds_
Like considerations lead us to the conclusions: (iv-3) For the cubic
there is one irreducible invariant of the fourth degree which contains

factors like e*®¢ twice, the other factors being like E®?, and this may
be chosen as

IV, = (4)]‘.eaxblcleazbzczEbacsEdldzAaads.
(iv-4) For the cubic there is one irreducible invariant of the fourth

degree whose numerical tensor product is composed entirely of factors
like E%b, except for one factor like 4, and this may be chosen as

IVy = @ T - Ea1a2 4 asbr Fbacs [rbser Fesdi | dads

For invariants of the fourth degree constructed wholly with the aid
of E<®, there are five possibilities:

A = 4T Emo2Easti Foaci fbscs Fesdi Fdads,

B = 4T E“h1Eeb2Fasei Fbsdi Feadz Feads,

C = T E#hEaaFasdiFhea Fbsda Fesds,

D = 4T+ EnsEabiFoee Fadi Feads Feads,

E = T - EmaxFashi Ebrei Ebadi Foaes Fdads,
Applying the identities 1-11 in all possible ways it is found that there
are four and only four relations on these expressions; so: (iv-5) For the

cubic there is only one irreducible invariant constructed wholly with
the aid of E<?, of the fourth degree, and this may be chosen as

IV(; — (4)T,anzEazMEbzclEbsczEcad1Ed2d3.
Then
B =1Vs+ (1/2)(I12)* — (1/2)(I11)?,
C = IVs + 111112 - (111)2,
D =1Ve+ (1/DI1,- 11, — (1/2)(111)?
E=1IVe+ (1/2)II)? — (1/2)II,-I1s.
All other invariants of the fourth degree are found to be reducible;
so we may summarize as follows: (iv) For the cubic there are six ir-

reducible invariants of the fourth degree, and these may be chosen
as IV1, IVg, IVa, IV4, IV5, IVs
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In a similar manner it is found that: (v) For the cubic there are two
irreducible invariants of the fifth degree, and these may be chosen as

V, = ®) T - ¢21bieigazbacacazdier 4 dzezEbacsEdsea,
V2 = (5 T - ga1breigazdbacacazdiel 4 byez [y dads 4 c3es,

A typical reduction is that of A = (5T - e%b1e14 a1b2 Fo2dz [ezes Fbads Flase1 frezes,
Iden 5 applied to Aew:Ed202 of A gives A=4I1,-1II—A4, or
A=2II-1I1I.

We may combine (i), (i), (iii), (iv), (v) in the following theorem.

TuarorREM II1. For the cubic Tw.X*X®X° (a, b, c=1, 2, 3) there are
eleven irreducible euclidean invariants of degree less than six, and these
may be chosen as 11y, 11y, 111, IVy, IV IV3, IV, IV, IV, Vi, V.

4. An irreducible system, complete through the fourth degree, of
euclidean covariants for the cubic. There seems to have been no sys-
tematic study of euclidean covariants for the cubic curve of the third
order. The best known are the Hessian, the polar conic of the line at
infinity, and the Laplacian. We shall often speak of a covariant of
degree 7 in T and order j in X2 as a (¢, j) covariant. The line at
infinity is a (0, 1) covariant, having for its equation =L, X*=X*=0.

4.1. (¢, 1) covariants. For the cubic T, X*X?X¢ there is only one
(1, 1) covariant, and this is L; = Top.E*X¢. There is no (2, 1) covari-
ant. There are four irreducible (3, 1) covariants, and these may be
chosen as

L31 — (s)T,ea1b1c1euzbzczEbg,c;,-X'asy L32 — (3)T.EalblEa201E0203Eb2bSX“3’
Li3 = (3T - Anbt EazerFbees Fbses X ag, L3y = (S)T.AalblEazclEhbsEcszaa.
The other (3, 1) covariants
A = (3)]‘.Ea1b1Ea201EbzczEbscaXa3, B = (3)T,Ea1b1Ea2b2Eb3C1EvzcaXa3,
C (3)T.Aa1b1Ea2b2Ebac1Eczchas’ D = (3)]‘.EwlblEazbzAbsmEczvaXas’

are expressible in terms of the irreducible ones by the relations:
A = Lgy + (IIy — II,) + 2I11-%,
B = Ly + (1/2)(ITy — IT;)L, + 2I11-2,
C = Lg;,
D = L3y — Lss.

In like manner it is found that there is only one irreducible (4, 1)
covariant, and this may be chosen as

Ly = @ T - ga1brer Fazbe [rdide [rbses fresds X a3,
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Therefore we have this theorem.

THEOREM IV. For the cubic there are seven irreducible (<, 1) euclidean

covariants (1=0, 1, 2, 3, 4), and these may be chosen as L, L1, Lz, Lz,
L33, L4, and L.

4.2. (1, 2) covariants. Obviously there is no (1, 2) covariant. There
are four (2, 2) covariants:

A = (5T Esb1Eerbr XesXbs B = (5T - AorbrgabaXasXbs,
C = T -AabEbbsXarXas = T EobiEbbs Yo Xas,

The expressions C and D contain no significant reducible factor, and
consequently are irreducible. Iden 4 applied to A4z gives
B=(L;)2—A. This is the only relation that exists on 4 and B; so (i)

there are three irreducible (2, 2) covariants, and these may be chosen
as
Co1 = (T -Anbrgab2 X o3 Xbs Cop = (9T - A1 Ebsbs a2 Xas

Cas = (2)T'E“‘b1Eb2b3Xa2Xa3.
One may construct three (3, 2) covariants
A = 5T embrergabrFercs Xoa X bs B = (3)T.ealwaAazcaEbzcaXaaXba’
C = (S)T.eaxblclA b2c2 [rbacs Y a2 X a3,

Applying Iden 5 to A222C¢2¢ of 4 we obtain 4 =2B. Iden 6 applied to
A2 X% of B gives B=C—B—L3-{, or 2B=(C—L3;-%. There is no
other relation on these expressions. Therefore (ii) there is one irreduc-
ible (3, 2) covariant, and this may be chosen as

C; = (3)]‘.ealblclAbzczEbachazXas_
(iii) By a similar procedure it is found that there are five irreduc-
ible (4, 2) covariants, and these may be chosen as
Cy = (A)T.ea1b1cxeazbzczEcad1Ed2d3Xa3sz,
Cy = (4)T.ealb101ea2b2dlEczcsEdzdaXastsy
Cus = (4)T,ebxcxdxebzczdzEulbsEvadaXasz’
C“ p <4)T.ealwaeazbzczEdldzAcadaXasta,

(‘/‘45 — (4)T . eblcldleb2€2d2E03daA b3a1XazXa3.
Combining (i), (ii), and (iii) we have this theorem

THEOREM V. For the cubic there are nine irreducible (1, 2) euclidean
covariants (1=1, 2, 3, 4), and these may be chosen as Ca, Cas, Cas, Cs,
C41y C42y C43y C44y C45~
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Using the general methods of construction and reduction as we
have above, we find that this theorem follows.

THEOREM V1. For the cubic (i=1, 2, 3, 4) : (i) there are six euclidean
irreducible (1, 3) covariants, and these may be chosen as

T31 = (3) T. ea1b1c1€a2b202Xast3Xc;,,

T3 = (3 T - Aorb1 Fbze1 Fezes Xbs X a2 X a3,

T33 = (3 T-A blclEszEalcaszXazXaa’

Tu = T -endre1fbediFerds Feads Xbs X az X oa,

Ty = T ed1bie1 fdzos fards fresds Xbs X a2 X a3
T = T XXX,

(ii) There are three irreducible (i, 4) covariants, and these may be
chosen as

Q2 — (2)T‘Ea1b1Xa2Xastsz3, er1 —_ (4)]‘,eb1c1d1€b202d2Eu1d3Xa2Xb2Xcs,
Q42 = T . e1)101 d1ebzczd2A al d3X“2X“3Xb3Xc3.
(iii) There are two irreducible quintics, and these may be chosen as
Ry = (35T - Emerqbrea X oz X as X'b2 X'bs X e,
R4 f— (4)T.ealcldlEbszdzdaXazXaaszXbaxca.
(iv) There is no irreducible covariant for i <5, j>6.

5. Geometric interpretations. It should be understood that the gen-
eral cubic curve given by the general equation of the third degree
in Xe,

T = Tope XXX =0,

(a, b, c=1, 2, 3 and T 4. symmetric) is under consideration here. For
such cubic no invariant is zero, and no covariant vanishing identi-
cally, unless specifically stated so. The point Pz= T4 a.05Tb10m0s
-ea1birJezd2 Fasbs [J =0 in expanded form is

(T112T123 + T190T 205 — T199T 113 — T123T222) U,
(T122T123 + T112T1s — T112T 905 — Tulea) U,
(T111T112 - (Tuz)2 - (lez)2 + T112T222) U:s = 0.

Keeping this expanded form in mind, and examining the contents of

the paper by Thomae [6], or that by Stuyvaert [7], we observe the
truth of this theorem.

TeEOREM VII. P; is the unique point whose polar conic is a circle.
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When we speak of the polar of a point (or of the pole of a line),
unless specified to the contrary, we mean with respect to the funda-
mental cubic T.

THEOREM VIII. (a) The polar conic of Py is Cs, and (b) Csis a circle.

Obviously the polar conic of V* with respect to T has the equation
T YeX?Xe=0.Let Y U, = Taja5a;1 65,6017 A %202E5 [, Then (a) is
evident, and (b) follows.

TuaeoreM IX. Every covariant conic of the cubic T whose coefficients
are of the third degree in T o, is a circle.

In §4.2 it was shown that one can construct three (3, 2) covariants,
there designated by 4, B, C, and that these are connected by the rela-
tions A =2B, and 2B=C— Ly 8. By Theorem VIII, C; is a circle, and
as a consequence of the relations just given 4 and B are also circles.
Recall from §4 that there are no covariant conics of degree less than
two, that there are covariant lines of the first and third degree, but
none of the second, and further from §3 there is no invariant of degree
less than two. As a consequence of these facts we conclude that every
covariant conic Q of the third degree is of the form Q=Fk:C;+ k2R,
where k; and k; are constants, and R is at most linear in X¢. But since
Cs is a circle, every such conic Q is a circle.

The condition that the polar conic of the point Y9, T4, XXV,
be a rectangular hyperbola is that (Ti+ Tee) Vo= T E®® Y =0.

TaEOREM X. The line Ly =0 is the locus of points whose polar conics
are rectangular hyperbolas.

This line is called the Laplacian of the cubic. The cubic for which
L1=0 has been studied by Brooks [8].

THEOREM X'. The Laplacian of the Hessian H = 3,1 - e*1d1¢1¢o2b202
- X XbXe3s=014s Ly =0.

Adapting the argument of White [9] to tensor notation, we find
that the equation of the polar conic of the line V,X*=0 with respect
to T is

T arasas Torgny€ 1P X X0, U, = 0.

If in this we replace U, by L,= [0, 0, 1] and use A4 > = estL,, we have
this next theorem.

TaeEOREM XI. The polar conic of the line at infinity is Cu=0.

In like manner, we have this theorem.
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TaEOREM XI'. The polar conic of the Laplacian is Cip=0.
The polar line of the point Y"U,=0 with respect to Coy1=0 is
T arayas Tonpapy A 1A B2 X 03 X 087 s = (),

In particular let ¥7U,=0 be P.. We have for the polar of P, with re-
spect to Cy

K = Taja305Tb,0505 T ey T ay ayayA 91014 929261114 202 Fresds X as

= 4II] - L; — T ehrerg azEavFaeFoscsXo1 (by Iden 4).

Using other identities we find that the last term is 2III-L;; so
K=2III L,.

TuaeOREM XII. The Laplacian of a cubic is the polar with respect to

the polar conic of the line at infinity of the unique point whose polar conic
is a circle.

Rather evident are these theorems and corollary.

TaeoreEM XIII. The polar conic of Tw.E**A°"U,=0, the point at
infinity on the Laplacian, is Cy=0.

COROLLARY. Cy =0 2s a rectangular hyperbola.

TueorREM X1V. The polar conic of TaE*E"U,=0, the point at in-
finity in the direction perpendicular to the Laplacian, is Co3=0.

Taking the polar of T E*®E*"U,=0 and Tw.E®*4A°"U, =0, respec-
tively, with respect to Cy;; =0, we get these theorems.

TueOREM XV. The diameter of the conic Cos conjugate to the direction
perpendicular to the Laplacian is L =0.

TaeorEM XVI. The diameter of the conic Cos conjugate to the direc-
tion of the Laplacian is L3s=0.

The condition for two lines V, and W, to be perpendicular is that
V.W3E**=0, and the condition for them to be parallel is that
V.WpA*®=0. From these a number of geometric facts follow quite
directly:

A.1. The locus of points whose linear polars are parallel to the La-
placian is the conic Cy=0.

2. The locus of points whose linear polars are perpendicular to the
Laplacian is the conic Cy=0.

3. The locus of points whose linear polars with respect to the Hes-
sian are perpendicular to the Laplacian is the conic C4=0.

4. The locus of points whose linear polars with respect to the Hes-
sian are parallel to the Laplacian is the conic Cu=0.
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5. The locus of points whose linear polars are perpendicular to the
Laplacian of the Hessian is the conic Cyi=0.

6. The locus of points whose linear polars are parallel to the La-
placian of the Hessian is the conic Cyp =0.

7. The locus of points whose linear polars with respect to the fun-
damental cubic and the Hessian are perpendicular is the quartic
Qa=0.

8. The locus of points whose linear polars with respect to the fun-
damental cubic and the Hessian are parallel is the quartic Qu=0.

9. The locus of points whose linear polars with respect to funda-
mental cubic and the quartic Q. are parallel is the quintic R;=0.

10. The Laplacian of the fundamental cubic and the Laplacian of

the Hessian are parallel if (and only if) I V,=0, and they are perpen-
dicular if

@ T - embicrgagbace frbscs Fasdi[rdeds = JVy -+ 2]V 5 = Q.

11. The Laplacian and L =0 are parallel if IV5=0, and they are
perpendicular if

w T-EaeEashi EhosEhsaEadiEdds=TV, + (1/2)(IT)2— (1/2)I1,-II,=0.

The line V,X*=0 is said to be minimal if V,V,E*=0. Hence we
have the following facts.

B.1. The Laplacian is a minimal line if (and only if) II;=0.

2. The locus of points whose linear polars are minimal lines is the
quartic Q:=0.

Using the condition for incidence of the point V, and the line Y¢,
namely that V,Y2=0, we get these statements.

C.1. P,, the unique point whose polar conic is a circle, lies on the
Laplacian if II1I1=0.

2. P, lies on the Laplacian of the Hessian if V;=0.

Not so direct is the next fact.

3. The line through P; and perpendicular to the Laplacian is
L33=0.

6. Some concomitants in expanded form. We list a few typical con-
comitants in expanded form. These are obtained by carrying out the
indicated summations in the tensor-invariant forms of the concomi-
tants, using the defined values of the components of e**¢, 4%, and E*®.

IIy = Tojag0,Toipgp B2 B2 Easbs = (T'yyy + T190)2 + (Tra2 + Ta22)?,
II2 = TalagasTblbgngulblEazszaabx

= (Tul)2 + 3(T112)2 + 3(T122)2 + (T222)2,
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IIT = (1/6) T ayasas Tospyvs T creqesd “11A P214 220230303
Tuir Tuz Tus
= Tonn Toz Tas ’
To1 Taz Toos
IVs = (4T - Es1924 asb1 Fbecr Fbser Fresdi Fdzds
3(T111)2T112T 122 + 2(T'129)*Ta22 + 3T 111(T'122) 2T 222
+ 6T 111 T112(T122)% + T111(Ta22)® + 3T 112(T102)?
— 3T112T192(T222)? — 2T111(T112)® — 3T111(T112)* T 200
— 6(T112)*T122T 222 — (T'111)3T'222 — 3(T112)°T 12,
Ly = TapeE®Xe = (T111 + T112) X' + (T112 + Tae) X?
+ (Tus + T223) X5,
(1/2)C21 = Taiaza5T61050,4 41814 9252 X 23 X bs
= [T111T122 - (T112)2](X1)2 + [T111T222 - T112T122]X1X2
+ [T112T 202 — (Ta99)?](X2)2
+ [T122T113 + T111T 23 — 2T112T123]X1X3
+ [T1sTa2s + T115T 22 — 2T122T123]X2X3
+ [T115T 228 — (T125)2](X?)2
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