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(O) and (L) (§1, Theorem 2), the sphere (G) having G for center and 
orthogonal to (Q) (§11, Theorem 1) is the second sphere of anti-
similitude of (0) and (L) ; hence (G) is coaxial with these spheres. 

THEOREM 3. The four spheres having for centers the vertices of a 
tetrahedron and orthogonal to the quasi-polar sphere cut the spheres 
having for diameters the respective medians of the tetrahedron along 
four circles belonging to the same sphere, namely, the (G)-sphere of the 
tetrahedron. 

The sphere (A) having A for center and orthogonal to the sphere 
(<2) is coaxial with the spheres (G) and {AGa), for the centers of these 
three spheres are collinear and all three are orthogonal to (Q). Simi­
larly for the vertices B, C, D of (T). 
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1. Introduction; construction of concomitants. In this paper we use 
the results of Cramlet [ l ] and the writer [2] to study the euclidean 
concomitants of the ternary cubic curve 

TahcX
aXbXc = 0, 

where a, b, c — \, 2, 3 and Tabc is symmetric. With tensor algebra as 
the medium of investigation all types of concomitants are readily con­
structed, and their geometric interpretations are also readily made in 
most cases. As is conventional in classical invariant theory, the word 
concomitant will be used as meaning rational integral concomitant 
unless stated to the contrary. 

As a consequence of Theorem 3 in [2], we have the following theo­
rem. 

THEOREM I. Every euclidean concomitant of the ground form 
TabcXaXbXc (a, b, c = l, 2, 3) is expressible by composition as a tensor 
of order zero with the use of the coefficient tensor Tabc, the variable coordi­
nate tensors Xa and Ua, and the numerical tensors eabc, La, and Eab. 
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The tensor eabc will not appear here since we are dealing with a 
ground form in Xa. In detail, 

r l 0 On 

L « = [0,0, 1], £<** = 0 

-0 

1 0 

0 0 J 

It is convenient to introduce the tensor Aab, where 

Aab = 

r o l o-
- 1 0 0 

L 0 0 0. 

Theorem 3 of [2] is the first fundamental theorem of euclidean in­
variant theory in tensor form, and Theorem I above is the particular 
form of it which we need here; this theorem constitutes a basis for the 
construction of concomitants. 

2. Reduction of concomitants. In [2] an algebraically complete sys­
tem of euclidean invariants for the cubic TabCXaXbXc = 0 is given in 
tensor form. For the conic CabXdXb = 0 the familiar algebraically com­
plete system of three invariants is also an irreducibly complete sys­
tem. But this is not true for the cubic. In this paper we shall find an 
irreducible system, complete through the fifth degree, of euclidean 
invariants for the cubic, and shall investigate geometric interpreta­
tion of these invariants in connection with other concomitants of the 
ground form. It is generally recognized that the problem of reduction 
of concomitants is more difficult than the problem of construction. 
See H. Weyl [3]. 

It is of interest to note that between the simple case of the conic 
and the situation for the general cubic is that of the degenerate cubic 
considered as the line BaX

a = 0 and the conic CabXaXb = Q. They have 
the irreducibly complete system of eight invariants 

h = BaBbE
ab, I2 = CabCcdCefe

ac«ebd', 

I4 = CabE«b, h = CabE™EbdBcBdy 

h = CabCcde^AbdBei 

h = CabCcdA"°Abd, 

U = CacCbde
abeecd'BeBf, 

h = CabA
aŒbdBcBd. 

Six of these are algebraically independent; they may be chosen as 
Ii, • • • , 76; then It and Is are expressible in terms of them by means 
of the syzygies 

3(/7)2 E= 3 / 3 / 6 - 2I1I2I4 ~ 2/2 /5 , 

(h)2 s hij, - (h)2 - WiYh* 
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The five invariants 72, Is, ^e, A, and CabAacAbdBcBd form an irreduc-
ibly complete system of affine invariants for the line and conic. They 
were studied recently by Weitzenböck [4], who used the symbolic 
notation of his text [5]. 

We now state the second fundamental theorem in the detailed and 
explicit tensor form needed to investigate the relations on the con­
comitants constructed in accordance with the first fundamental theo­
rem. 

THEOREM I I . Every identity satisfied by the concomitants constructed 
by the first fundamental theorem for a set of ground forms in Xa can be 
established with the basic identities : 

==s çdbcjiae I ^adclffbe I ^abdj^ce 

= çdbc Va I pddc Vb_\ ^abdVc 

== fidbcpaef _|_ c.adcA>ef I ^abd^cef 

~EacEhd-EadEbc
y 

=zAabAcd+EadEbc, 
==AcbEad+AacEbd, 
=A cbXa+A acXb+eabcLdX

d, 
= A c^fSideXA acçbde I çubcA de 

Iden 
Iden 
Iden 
Iden 
Iden 
Iden 
Iden 
Iden 
Iden 
Iden 

1. 
2. 
3. 
4. 
4' 
5. 
6. 
7. 
8. 
9. 

^abcTpde 

pdbcVd 

çabcçdef 

A abAcd 

EacEbd 

AabEcd 

AabXc 

A abçcde 

fdbcA de 

A abAcd 

be A de _L £adcA &e_l_ £.a>bdA ce 

^A cbA ad~\-A acA bd 

Iden 10. EabEcdEe' =EabEcŒed+EadEcbEe' -
+EadEcŒeb, 

Iden 11. XaEbcEde E=XaEb*Edc+EacXbEde-
+ EaeEbcXd+eabdAecLfXf. 

Iden 2 may be established by expanding 

-EadEcŒeb-EaŒcbEed 

EacEbeXd-EaeXbEdc 

and using 

«1 
b 

di Ô2 

«; 

d 

« i 

X 

xb 

xc 

xa 

= 0, 

02 Ô3 
b 

Si 02 

S3 

Most of the other identities are consequences of Iden 2 in rather obvi­
ous ways. We remark briefly about some not of this class. To obtain 
Iden 4 consider 
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ab cd abZ cdS 
A A = € € = 

ô\ Ö2 I I ôi ôi 1 1 £ JE 
6 b c d = = = T - , ^ 0 T-i^' 

Ôi 62 I I 2̂ #2 I I £ £ 

Iden 10 may be obtained from the determinantal product 

ôi Ô2 Ô3 

6 6 6 
ôi Ô2 Ô3 

Oi Ô2 

d e ƒ 
Oi Oi Oi 

d e ƒ 
Ô2 Ô2 ^2 

0 0 0 
o, 

and Iden 11 from 

st si x1 I 
d e 2 1 

Ö2 Ô2 X 

0 0 x3 
eabCAdeLfX

f. 

Ôi Ö2 Ôz 
b 6 6 

Oi O2 Ô3 

1 C C C 

I Ôx Ô2 Ô3 

That these identities constitute a reduction basis for the concomi­
tants constructed by the first fundamental theorem may be seen by 
observing that they give the alternate ways of writing all types of 
products which arise. 

3. An irreducible system, complete through the fifth degree, of eu-
clidean invariants for the cubic TabCXaXbXc. We note that the cubic 
has only one "formal" invariant of the first degree, Tabctahc, and this 
vanishes identically due to the skew-symmetry of eabc\ so (i) for the 
cubic there is no invariant of the first degree. 

We can construct three (and only three) invariants of the second 
degree : 

A = TaiaiatThlhah9E*™Eto**E***, B = Ta^T^^E^E^E**', 

C = Ta^Tb^bA^A^E^K 

Invariants as Taia2a,Tblb2bAalblAa2b2^a3hand Taia2azTblb2b&Aa^Eb^Ea^ 
which vanish identically on the interchange of equivalent indices are 
not listed here, nor in similar circumstances in the future. In this con­
nection one should keep in mind the skew-symmetry of eabc and of 
Aab. The only identities applicable to A and B are Idens 4' and 10. 
The application of the latter to each of these merely gives A^A and 
B=B. The application of Iden 4' to either of them results in 
C^A — B. The only identities applicable to C are Idens 4 and 5. The 
first results in the relation just given, and the latter in C = C. Thus 
C^A— B is the only relation on the invariants A, B, C. Therefore, 
(ii) for the cubic there are two irreducible invariants of the second 
degree, and these may be chosen as 
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Hi = Taia2a3Tblb2b,E^Eb^E^y II2 = Taia2asTblb2hE
a^E^E^bK 

Often we shall use the contracted notation 

(k) J- -L a i ia i2«13 û21a22«23 '*'•*• a>1clak2akZ' 

To illustrate, Ih= mT-Eaia2Eb^b2Eazbz. 
There are three invariants of the third degree to consider: 

A = (z)X'AaiblEb2C1AC2a2eazbzCZ $ = (3) T ' EaiC1Eblh2A c2a2€a3&3C3 

C = (3)jT • AaiblAb2clAC2a2ea3bzcz. 

Applying Iden 5 to AC2a2Eblb2 of B, we get B = -A-A, or B= -2A. 
Applying Iden 4 to AaiblAb2C1 of C, we obtain C = A —B. On applica­
tion of the appropriate reduction formulas in all possible ways to 
A j B, C, it is found that there is no relation on these expressions other 
than the two given. Hence: (iii) For the cubic there is one irreducible 
invariant of the third degree, and this may be chosen as 

III = ( l / 6 ) r a i a a a 3 r 6 l 6 2 6 3 r c i C 2 C 3 ^ a l & ^ & 2 0 1 ^ a 2 c 2 € a 3 & 3 C 3 . 

The number of formal invariants which one can construct increases 
rapidly as the degree goes beyond three. Their consideration is facili­
tated by considering all invariants of a certain type together, (iv-1) 
For the cubic there is only one invariant of the fourth degree which 
contains the numerical tensor eabc four times, and this is irreducible, 
it being the well known projective invariant of the fourth degree 

IY1 = ,^T • taiblcl€a2b2dl€azC2d26bzczdz. 

There are six invariants of the fourth degree which contain factors 
like eabc twice, the remaining factors being like Eab: 

A = /4N x - eaiblclea2b2C2EazdlEbzd2Eczdz B= (é)T - eaiblclea2b2C2EazbzEczdlEd2dz 

Q = r^T • eaiblcleb2C2dlEa2azEbzczEd2dz D = ,A)T - eaiblcleb2C2dlEa2azEbzd2Eczdz 

F = f4s x • eaiblcleb2C2dlEa2d2EazdzEbzcz F = (i)X • eaiblcleb2C2dlEa2b2Eczd2Eazdz. 

Applying the basic identities in all possible ways, we find that these 
invariants are connected by the relations 

A = D + 2F; B s= E + 2F\ B = C + 2D) C s 2D +E - 1F\ 

and only these. Therefore: (iv-2) For the cubic there are two irreduc­
ible invariants of the fourth degree which contain factors like eabc 

twice, the remaining factors being like Eab, and these may be chosen 
as 
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jy2 = ,A)X-eaiblcleb2C2dlEa2a3Eb3C3Ed2d3 

IV s = (4) X - eaiblcleb2C2dlEa2b2EC3d2Ea3dz. 

Like considerations lead us to the conclusions : (iv-3) For the cubic 
there is one irreducible invariant of the fourth degree which contains 
factors like eabc twice, the other factors being like Eab, and this may 
be chosen as 

IV ± = d)T • eaiblclea2b2C2Eb3C3Edld2Aazd3. 

(iv-4) For the cubic there is one irreducible invariant of the fourth 
degree whose numerical tensor product is composed entirely of factors 
like Eab, except for one factor like Aab, and this may be chosen as 

IV h = n\T • Eaia2Aa3blEb2C2Eb3C1EC3dlEd2d3. 

For invariants of the fourth degree constructed wholly with the aid 
of Eab, there are five possibilities : 

A = ,4) X' Eaia2Ea3blEb2C1Eb3C2EC3dlEd2d3 

2? = C/i)x • EaiblEa2b2Ea3C1Eb3dlEC2d2EC3d3 

C = (A)T'• EaiblEa2ClEa3dlEb2C2Ebzd2EC3d3 

U z=z ,4>> X' Eaia2Ea3blEb2C1EbzdlEC2d2EC3d3 

22 = /4s X' Eaia2Ea3blEb2ClEb3dlEC2C3Ed2d3. 

Applying the identities 1-11 in all possible ways it is found that there 
are four and only four relations on these expressions ; so : (iv-5) For the 
cubic there is only one irreducible invariant constructed wholly with 
the aid of Eab> of the fourth degree, and this may be chosen as 

Then 

IV * = u)T ' Eaia2Ea2blEb2ClEb3C2EczdlEd2d3, 

B^IV,+ (l/2)(IhY - (1/2)(7I0S, 

C-IVt + Ih-IIt- (// i)2 , 

D s IV, + (l/2)Ih-Ih - ( l / 2 ) ( / / 0 ' , 

E s IV, + (1/2X110* ~ ( 1 / 2 ) J J r / / , . 

All other invariants of the fourth degree are found to be reducible ; 
so we may summarize as follows : (iv) For the cubic there are six ir­
reducible invariants of the fourth degree, and these may be chosen 
as IVi, IVt, IV,, IV,, IV,, IVt. 



i942] TERNARY CUBIC 595 

In a similar manner it is found that : (v) For the cubic there are two 
irreducible invariants of the fifth degree, and these may be chosen as 

y = ,g . j 1 -e a i & l c l e a 2 & 2 C 2 € a 3 ^ i e i ^4 ^2e2jE&3C3jEd3e3 

y2 = .g. 2^ -e a i & l c l e a 2 & 2 C 2 e a 3 d i e i y l & 3 e 2 -E r f 2 c i ! 3 y l C 3 e 3 . 

A t y p i c a l r e d u c t i o n is t h a t of A = (b)T- €dlblclAaib2Ea2d2EC2C3Eb3d^Ea3eiEe2e3. 
Iden 5 applied to Aaib2Ed2a2 of A gives A = 4 I I i / I I —A, or 
A s27h-III . 

We may combine (i), (ii), (iii), (iv), (v) in the following theorem. 

THEOREM I I I . For the cubic TabcXaXbX° (a, b, c = l, 2, 3) there are 
eleven irreducible euclidean invariants of degree less than six, and these 
may be chosen as IIh II2, III, IVh IV2, IV*, IV,, IV,, IV,, Vx, V*. 

4. An irreducible system, complete through the fourth degree, of 
euclidean covariants for the cubic. There seems to have been no sys­
tematic study of euclidean covariants for the cubic curve of the third 
order. The best known are the Hessian, the polar conic of the line at 
infinity, and the Laplacian. We shall often speak of a covariant of 
degree i in Tabc and order j in Xa as a (i, j) covariant. The line at 
infinity is a (0, 1) covariant, having for its equation 2 = LaX

a = Xz = 0. 
4.1. (i, 1) covariants. For the cubic TabcXaXbXc there is only one 

(1, 1) covariant, and this is Li = TabCEabXc. There is no (2, 1) covari­
ant. There are four irreducible (3, 1) covariants, and these may be 
chosen as 

L Z 1 = ( 3 ) r • e
aibiclea2b2C2Eb3C3Xa3, L S 2 = (z)T • EaiblEa2C1EC2C3Eb2b3Xa3, 

Z,33 = (S)T - AaiblEa2C1Eb2C2Eb3C3Xa3, L 3 4 = ( 8 >r • AaiblEa2C1Eb2b*EclC2XaK 

The other (3,1) covariants 

A = (z)T • E>aiblEa2C1Eb2C2Eb3C3Xa3 B = ,S)T - EaiblEa2b2Eb3C1EC2C3Xa3 

C = (3)T* • AaiblEa2b2Eb3ClEC2C3Xa3 D = (s)T - EaiblEa2b2Ab3C1EC2C3Xa3 

are expressible in terms of the irreducible ones by the relations : 

A = £32 + (Hi ~ Hi) + 2111-2, 

B^LS2+ (1 /2) ( / / , - II^U + 2111-2, 

C = L33, 

D = Z/34 — £33. 

In like manner it is found that there is only one irreducible (4, l) 
covariant, and this may be chosen as 

£ 4 == . 4 ) J". eaibici£a2b2£di (12^302jftc3d3Xa3, 
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Therefore we have this theorem. 

THEOREM IV. For the cubic there are seven irreducible (i, 1) euclidean 
covariants (i = 0, 1, 2, 3, 4), and these may be chosen as 8, Li, Ln, £32, 
L33, Lu, and L4. 

4.2. (i, 2) covariants. Obviously there is no (1, 2) covariant. There 
are four (2, 2) covariants: 

A = (2)T'EaibiEa2b2Xa3Xb3
f B = {2)T-Aa^Aa2b2Xa3Xb3, 

C = (2 )r-^a i6 l£62&3Xa2Xa3, D = (2)r-£ai6l£6263Xa2Xa3. 

The expressions C and Z> contain no significant reducible factor, and 
consequently are irreducible. Iden 4 applied to Aaib^Aa2h2 gives 
J3==(Li)2— ̂ 4. This is the only relation that exists on A and B\ so (i) 
there are three irreducible (2, 2) covariants, and these may be chosen 
as 

C21 = (2)T'Aa^Aa2b2Xa3Xb3, C22 = (2)T-Aa^Eb2b3Xa2Xa3, 

C23 = (2)r-£ai6l£6263Xa2Xa3. 

One may construct three (3, 2) covariants 

A = (3)r-€
ai6lcl^[a262£C2C3Xa3Z&3, B = (3)r-€

ai6lcl^4a2C2£62C3Xa3X&3, 

C = ,3) T' eaiblclAb2C2Eb3C3Xa2Xaz. 

Applying Iden 5 to Aa*b*Ce*e* oî A we obtain A =2B. Iden 6 applied to 
A"2°*Xbs of B gives B = C-B-LSV%, or 2 5 s C - L 8 i - 8 . There is no 
other relation on these expressions. Therefore (ii) there is one irreduc­
ible (3, 2) covariant, and this may be chosen as 

Cz — (3) T - eaiblclAb2C2Eb3C3Xa2Xa3. 

(iii) By a similar procedure it is found that there are five irreduc­
ible (4, 2) covariants, and these may be chosen as 

C41 = ( 4 ) r • eaiblclea2b2C2EczdlEd2dzXazXbz, 

C42 = (^T • eaiblclea2b2dlEC2C3Ed2d3Xa3Xb3 

C43 = ( 4 )r . e&lcirfl€&2C2d2 jgai63Jgc3d3X a2X0 3 , 

C44 = ( 4 )r . €«l&lci ea262C2j5did2^C3d3X«3X& 3 , 

C45 = (A) T - eblcldleb2C2d2EC3d3Ab3aiXa2Xa3. 

Combining (i), (ii), and (iii) we have this theorem 

THEOREM V. For the cubic there are nine irreducible (i, 2) euclidean 
covariants (i = l, 2, 3, 4), and these may be chosen as C21, C22, C23, C3, 
C41, C42, C43, C44, C45« 
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Using the general methods of construction and reduction as we 
have above, we find that this theorem follows. 

THEOREM VI. For the cubic (i = 1, 2, 3, 4) : (i) there are six euclidean 
irreducible (i, 3) covariants, and these may be chosen as 

Tn = (3)r-€
al&lcl€°262C2Xa3X63XC3, 

Tn = (s)T-AaiblEb2C1EC2C3Xb*Xa2Xa*, 

TZ3 = (3)T-AbicŒb2C2Eaic*Xb*Xa2Xa*, 

y4 1 = ,A)T - eaiblclEb2dlEC2d2EC3d3XbzXa2Xa*, 

TA2 = {i)T - edlb^Eb2C2Ea^d2Ec^XHXa2Xa^ 

T = TabcX
aXbXc. 

(ii) There are three irreducible {i1 4) covariants, and these may be 
chosen as 

Q 2 = (2)T-Ea*biXa2Xa*Xb2Xb*, Ö4i= (i)T'eblcldHb2C2d2Ea*d*Xa2Xb2Xc\ 

Ö42 = (4)^ • e
blcldleb2C2d2Aaid*Xa2XasXb3XcK 

(iii) There are two irreducible quintics, and these may be chosen as 

Rz = iZ)T-EwAbiC2Xa2Xa*Xb2Xb*Xc*, 

R± = ^T-ew^E^E^^X^X^X^X^X0*. 

(iv) There is no irreducible covariant for i < 5, j > 6. 

5. Geometric interpretations. I t should be understood that the gen­
eral cubic curve given by the general equation of the third degree 
inX«, 

T = TabcX
aXbXc = 0, 

(aj b, c = l, 2, 3 and TaU symmetric) is under consideration here. For 
such cubic no invariant is zero, and no covariant vanishing identi­
cally, unless specifically stated so. The point P2 = Taia2azTblb2bz 

-eaibirAa2b2Ea*b*Ur = 0 in expanded form is 

(^112^123 + ^122^223 — ^122^113 ~" ^123^222)^71 

(2ni2271123 + ^112^113 ~~ ^112^223 — ^111^123)^2 

( r m r 1 1 2 - (r112)2 - (r122)2 + r112r222)£/3 = o. 
Keeping this expanded form in mind, and examining the contents of 
the paper by Thomae [ó], or that by Stuyvaert [7], we observe the 
truth of this theorem. 

THEOREM VII . P 2 is the unique point whose polar conic is a circle. 
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When we speak of the polar of a point (or of the pole of a line)» 
unless specified to the contrary, we mean with respect to the funda­
mental cubic T. 

THEOREM VIII . (a) The polar conic of Pi is C3, and (b) Cz is a circle* 

Obviously the polar conic of Ya with respect to T has the equation 
TahcYaXbXc = 0. Let YrUr = Taia2a,Tblb2Hea^rAa^Ea^Ur. Then (a) is 
evident, and (b) follows. 

THEOREM IX. Every covariant conic of the cubic T whose coefficients 
are of the third degree in Tabc is a circle. 

In §4.2 it was shown that one can construct three (3, 2) covariants, 
there designated by A, B, C, and that these are connected by the rela­
t i o n s ^ = 2JB, and 2B^ C—Ln2. By Theorem VIII, G is a circle, and 
as a consequence of the relations just given A and B are also circles. 
Recall from §4 that there are no covariant conies of degree less than 
two, that there are covariant lines of the first and third degree, but 
none of the second, and further from §3 there is no invariant of degree 
less than two. As a consequence of these facts we conclude that every 
covariant conic Q of the third degree is of the form Q^k\Cs+k2R, 
where ki and ki are constants, and R is at most linear in Xa. But since 
Cs is a circle, every such conic Q is a circle. 

The condition that the polar conic of the point Ya, TabCXaXbYc, 
be a rectangular hyperbola is that (Tnc+T22c) Yc = TabcEabYc = 0. 

THEOREM X. The line Lx = 0 is the locus of points whose polar conies 
are rectangular hyperbolas. 

This line is called the Laplacian of the cubic. The cubic for which 
Li = 0 has been studied by Brooks [8]. 

THEOREM X' . The Laplacian of the Hessian H = ( 3 ) r €
a i 6 l c l e a 2 6 2 C 2 

• Xa*Xb*Xc* = 0isLZi=:0. 

Adapting the argument of White [9] to tensor notation, we find 
that the equation of the polar conic of the line VaX

a = 0 with respect 
to T is 

If in this we replace Up by Lp = [O, 0, 1 ] and use A ah = eabcLc, we have 

this next theorem. 

THEOREM XI . The polar conic of the line at infinity is C2i = 0. 

In like manner, we have this theorem. 
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THEOREM XI ' . The polar conic of the Laplacian is C42 = 0. 

The polar line of the point F r£/ r = 0 with respect to C2i = 0 is 

Taia2azTblb2hA
a^Aa*b>Xa*Xa*Yb3 = 0. 

In particular let YrUr = 0 be P2 . We have for the polar of P 2 with re­
spect to C21 

K = Taia2aJblb2b3TClC2CJdld2dzA^^^ 

= MII-Li - (i)T'edlhlclAd2b2Ed^Ea^Ea^Xai (bylden4). 

Using other identities we find that the last term is 27/7-Li; so 
K^HII-Lx. 

THEOREM XI I . The Laplacian of a cubic is the polar with respect to 
the polar conic of the line at infinity of the unique point whose polar conic 
is a circle. 

Rather evident are these theorems and corollary. 

THEOREM X I I I . The polar conic of TabcE
abAcrUr = 0, the point at 

infinity on the Laplacian, is C22 = 0. 

COROLLARY. C22 = 0 is a rectangular hyperbola. 

THEOREM XIV. The polar conic of ra&cEa6EcrC/ r = 0, the point at in­
finity in the direction perpendicular to the Laplacian, is G3 = 0. 

Taking the polar of TabcE
abEcrUr = 0 and TabcEabAcrUr = 0, respec­

tively, with respect to C23 = 0, we get these theorems. 

THEOREM XV. The diameter of the conic C23 conjugate to the direction 
perpendicular to the Laplacian is L32 = 0. 

THEOREM XVI. The diameter of the conic Cn conjugate to the direc­
tion of the Laplacian is L34 = 0. 

The condition for two lines Va and Wa to be perpendicular is that 
VaWbE

ab = 0, and the condition for them to be parallel is that 
VaWbA

ab = 0. From these a number of geometric facts follow quite 
directly : 

A.l . The locus of points whose linear polars are parallel to the La­
placian is the conic C22 = 0. 

2. The locus of points whose linear polars are perpendicular to the 
Laplacian is the conic C23 = 0. 

3. The locus of points whose linear polars with respect to the Hes­
sian are perpendicular to the Laplacian is the conic C41 = 0. 

4. The locus of points whose linear polars with respect to the Hes­
sian are parallel to the Laplacian is the conic Cu = 0. 
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5. The locus of points whose linear polars are perpendicular to the 
Laplacian of the Hessian is the conic C^ — 0. 

6. The locus of points whose linear polars are parallel to the La­
placian of the Hessian is the conic C40 = 0. 

7. The locus of points whose linear polars with respect to the fun­
damental cubic and the Hessian are perpendicular is the quartic 
041 = 0. 

8. The locus of points whose linear polars with respect to the fun­
damental cubic and the Hessian are parallel is the quartic QA2==0. 

9. The locus of points whose linear polars with respect to funda­
mental cubic and the quartic Q2 are parallel is the quintic i?3 = 0. 

10. The Laplacian of the fundamental cubic and the Laplacian of 
the Hessian are parallel if (and only if) 1^4 = 0, and they are perpen­
dicular if 

(4) T• eaiblclea2b2C2Eb*cŒa3dlEd2d* s= IV2 + 2IVZ = 0. 

11. The Laplacian and L32 = 0 are parallel if JFO = 0, and they are 
perpendicular if 

(4) r - E ^ E ^ E 6 * ^ ^ ^ 

The line VaX
a = 0 is said to be minimal if VaVbE

ab = 0. Hence we 
have the following facts. 

B.l . The Laplacian is a minimal line if (and only if) I I i = 0. 
2. The locus of points whose linear polars are minimal lines is the 

quartic <22 = 0. 
Using the condition for incidence of the point Va and the line F a , 

namely that VaY
a = Q, we get these statements. 

C l . P2 , the unique point whose polar conic is a circle, lies on the 
Laplacian if III = 0. 

2. P 2 lies on the Laplacian of the Hessian if Fi = 0. 
Not so direct is the next fact. 
3. The line through P 2 and perpendicular to the Laplacian is 

L33 = 0. 

6. Some concomitants in expanded form. We list a few typical con­
comitants in expanded form. These are obtained by carrying out the 
indicated summations in the tensor-invariant forms of the concomi­
tants, using the defined values of the components of ea6c, Aab, and Eab. 

Hi = Taia2a,Tblb2b3E^2Eb^b2E^ - ( r m + T122y + (TU2 + T222)
2, 

Ih = Taia2aBTblb2HE^bŒa2b2Ea^ 

= (rui)2 + 3(rn2)2 + 3(r122)2 + (r222)*, 
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ni = (i/6)raia2a3n1&263rclc.2C3^^&^^i^«2C2€a363c3 

^111 7 \ l 2 ^113 

^211 2^212 ^213 

^221 ^222 ^223 

jyh = (4)T • Eaia2Aa3blEb2C1Eb3C2EC3dlEd2d3 

= 3 ( T m ) 2 T i 12 7̂ 122 + 2(r i22)3^222 + 3T ,iii(T'i22)22n222 

+ ôTmTu^Tm)2 + Tni(T222y + 3Tn2(T122y 

— 3T'ii2ri22(2n222)2 — 2rm(rii2)3 — 3J,in(ru2)2T,222 

— 6(rii2)
2ri22r222 — (rm)3r222 — 3(rn2)3ri22, 

Li = TabcE«bXc = (Tm + Tn2)X' + {Tll2 + T222)X* 

+ (r118 + r223)x3, 
(l/2)C,i = Taia2a3Tblb2b,A

a^Aa2b2Xa3Xb3 

= [TmT122 - (Tn*)*](Xiy + [T1UT222 - TlltTm]X^X^ 

+ [T112T222 - (r222)2](X2)2 

+ [Ti22Tnz + TmT22s — 2Tii2Ti2z\XlXz 

H~ 1^112^223 + TiuT222 — 27 1 i22^123j^ 2 -^ 3 

+ [r113r223 - (r123)2](x3)2. 
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