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Introduction. When Darwin developed the theory of evolution by 
natural selection, practically nothing was known of hereditary differ­
ences beyond their existence. Since 1900, a body of knowledge on the 
mechanism of heredity and on mutation has been built up by experi­
ment that challenges any field in the biological sciences in the extent 
and precision of its results. The implications for evolution are not, 
however, immediately obvious. I t is necessary to work out the statisti­
cal consequences. 

Studies in the field of statistical genetics began shortly after the 
rediscovery of Mendelian heredity in 1900. Those of J. B. S. Haldane 
[7] and R. A. Fisher [4] have been especially important with respect 
to the application to evolution. My own approach to the subject came 
through experimental studies conducted in the U. S. Bureau of Ani­
mal Industry on the effects of inbreeding, crossbreeding and selection 
on populations of guinea pigs [21, 22, 23, 37] and through the attempt 
to formulate principles applicable to livestock breeding [19, 20, 24, 
25, 13, 34]. On moving into the more academic atmosphere of the 
University of Chicago, I have become more directly concerned with 
the problem of evolution. 

I should note that the deductive approach, to which I shall con­
fine myself here, involves many questions that can only be settled by 
observation and experimental work on natural populations and that 
a remarkable resurgence of interest in such work is in progress [2, 9] . 

Postulates. It will be desirable to begin with a brief review of the 
more important factors of which account must be taken. 

The basic fact of modern genetics is that heredity can be analyzed 
into separable units, "genes," whose most essential property is that of 
duplicating themselves with extraordinary precision, irrespective of 
the characteristics of the organism in whose cells they are carried. We 
shall restrict consideration to changes in the system of genes and ag­
gregates of genes (chromosomes). There are relatively rare and ob­
scure hereditary changes which must be attributed to other cell 
components but our knowledge of these does not warrant the elabo­
ration of a statistical theory. 

Fortunately the same theory applies to a large extent to gene muta-
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tions and to most classes of grosser chromosomal changes (duplica­
tions, deficiencies, inversions, translocations, and so on). It will be 
assumed here that a given kind of mutation occurs at a constant rate 
per generation. Observed rates in organisms as remote as corn plants, 
vinegar flies and man are of the order of 10~5 or less per generation. 
Reverse mutation may occur at measurable rates. 

It is simplest to deal with mere pairs of alternative conditions 
(alleles) but the theory remains seriously inadequate unless capable 
of extension to multiple alleles. 

In general I shall assume that the reproductive cells are haploid 
(that is, contain just one representative from each set of alleles) and 
that their union results in diploid individuals (with two such repre­
sentatives in all cells, until reduction occurs in the formation of the 
germ cells). This is the usual case but there are species in which other 
situations prevail (tetraploids, hexaploids, aneuploids, and so on). 
The group of sex linked genes constitutes an important special case 
in many otherwise completely diploid organisms (including man). I 
shall not go far into the extension to these cases. 

I t is simplest to assume that the members of different series of 
alleles are distributed at random in the reduction division by which 
the reproductive cells receive a half sample of the genes of the individ­
uals producing them (that, for example, individual AaBb produces 
germ cells AB, Ab, aB and ab in equal numbers). The phenomenon 
of partial linkage, exhibited by genes carried in the same chromosome 
should, however, be taken into account. These are the principal postu­
lates as far as the mechanism of heredity is concerned though others 
are required in special cases. 

The relations of genes to observed characteristics are important. 
In general, any measurable character is affected by genes at many loci 
and a single gene often has multiple apparently unrelated effects. The 
effects of genes in combinations are often roughly cumulative but 
marked exceptions are also very common. Account must be taken of 
noncumulative effects within series of alleles (dominance) and be­
tween series (gene interaction). 

The breeding structure of the population is important. The situa­
tion in nature is so complex that models must be chosen that are com­
promises between mathematical simplicity and biological adequacy 
[35]. I shall introduce only the simplest models in the course of the 
present discussion. 

Natural selection is an exceedingly complex affair. Selection may 
occur at various biological levels—between members of the same 
brood, between individuals of the same local population, between 
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such populations (as through differential increase and migration) and 
finally between different species, a subject that carries us outside the 
field of genetics and which has been discussed mathematically by 
Lotka [ l2] , Volterra [ l7] and Nicholson and Bailie [14], Selection 
among individuals may relate to the mating activities of one or both 
sexes, to differences in rate of attainment of maturity, to differential 
fecundity and to differential mortality at all ages. Selection may act 
steadily or may vary both in intensity and direction in different re­
gions and at different times. Again I can only deal here with the 
simplest models. 

Gene frequency. In such a complex situation, verbal discussion 
tends toward a championing of one or another factor. We need a 
means of considering all factors at once in a quantitative fashion. 
For this we need a common measure for such diverse factors as muta­
tion, crossbreeding, natural selection and isolation. At first sight these 
seem to be incommensurables but if we fix attention on their effects 
on populations, rather than on their own natures, the situation is 
simplified. Such a measure may be found in the effects on gene fre­
quency in each series of alleles. 

Because of the complete symmetry of the Mendelian mechanism, 
gene frequency has no tendency to change in an indefinitely large 
closed population not subject to mutation or selection. Each homo­
zygote (for example, A\A\, A2A2 or AsAs) produces only one kind of 
germ cell. Each hétérozygote (for example, A1A2, AiAz, A2Az) pro­
duces two kinds in equal numbers. In a population in which the array 
of gene frequencies is (q\A 1+^2^2+ * * • +qmAm) (letting the q's rep­
resent the frequencies, and the ^4's the genes) the frequencies of geno­
types come to equilibrium according to the terms in the expansion 
of (qiA i+q2A2+ • • • +qmAm)2 in the first generation of random mat­
ing after attainment of equality of gene frequencies in the sexes [8]. 
Under sex linkage [lO, 15] and in polyploids [ó] equilibrium is not 
reached at once but is rapidly approached. Inbreeding and assorta-
tive mating change the relative frequencies of homozygotes and 
hétérozygotes but not the gene frequencies. 

One immediate consequence of this persistence of gene frequencies 
is that variability tends to persist. But the slightest continuing un­
balanced pressure on gene frequency tends to cause cumulative 
change. It is obvious that recurrent mutation, immigration, selection, 
and the accidents of sampling in an isolated population of small size 
are all factors that can bring about such change. 

The frequencies of combinations of different series of alleles (for 
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example, Af a; B, b) reach equilibrium in a random breeding popula­
tion in which gene frequencies are constant only when the genes are 
combined at random (terms of [(l—qA)a+qAA]2[(l—qB)b+qBB]2). 
Equilibrium is not reached immediately, however. The departure 
from equilibrium is halved in each generation of random mating in 
the case of two pairs of alleles in different chromosomes. In general, 
the departure is reduced by the proportion c, where c is the mean 
chance of recombination [18, 11, 16]. 

Systematic changes of gene frequencies. The rate at which gene 
frequency changes under recurrent mutation is obvious [27]. Let q 
be the frequency of the gene and u the rate at which it mutates to 
its alleles as a group and Aq the rate of change of q per generation 
Aq = —uq. 

If reverse mutation occurs at the rate v per generation, the net rate 
of change of q is 

(1) Aq = v(l — q) — uq. 

In the case of multiple alleles, v is the weighted average for the vari­
ous alleles of the gene in question and is thus a function of their rela­
tive frequencies. I t is, however, independent of q. 

The effect of crossbreeding is similar if we adopt the simplest model 
[27]. If a population with gene frequency q exchanges the proportion 
m each generation with a random sample of immigrants from the 
whole species (gene frequency qt) the rate of change in gene frequency 
is 

(2) Aq = - m(q - qt). 

In actual cases the immigrants are not likely to be a random sample 
from the whole species but to come largely from neighboring popula­
tions. Effective m is thus, in general, smaller than the apparent 
amount of immigration and is not necessarily the same for all loci. 
There may also be selective migration. The simplest model must 
suffice here. It permits identification of the theories of mutation and 
immigration by substituting mqt for v, and m{\—qt) for u. 

The effects of selection have been considered extensively by Haldane 
[7] in terms of the frequency ratio (q/l—q) and by Fisher [4]. As 
there can be no selection pressure without at least two alternatives, 
any expression for it, applicable to all values of q, must include the 
factor q(l— q), excluding certain limiting cases. Thus the form 
aq(l-q) has been used by Fisher as the basis for general discus­
sion. For the present purpose somewhat less general forms are more 
useful. Consider first the case of a random breeding population of 
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diploid individuals in which the combinations of paired alleles may 
be assigned constant relative selective values [30 ]. 

enotype 

AA 
AA' 
A'A' 

Frequency (ƒ) 

22 

22(1-2) 
( 1 - 2 ) 2 

Value (W) 

WAA 

WAA-
WA'A-

For the frequency of A after a generation 

«i = [WAAq2 + WjuL'qiX ~ q)]/W 

where 

W = E fW = WAAq* + 2WAA>q{\ - q) + WA>A>(\ ~ q)\ 

(3) Aq = q i - q = q(l- q) [WAAq + WAA>(\ ~ 2q) - WA>A>(\ ~ q)]/W, 

Ç 2W dq 

Selection, however, really applies to the organism as a whole not 
to single series of alleles. If the population is heterallelic in n pairs 
of pertinent alleles, the number of possible combinations is 3 n . Each 
of these has a certain frequency and a certain relative selective value, 
the latter of which we here assume to be constant. If the three phases 
in the A series of alleles are combined at random with the combina­
tions of the other series, the average selective values of AA, A A' 
and A 'A ' are independent of qA although functions of the other g's. 
Thus 

qA{\ - qA) dW 
( 4 ) AqA = . 

2W dqA 

We have assumed only pairs of alleles, but as any group of alleles 
may be treated formally as one, this formula may be applied to multi­
ple allelic series. The selective values WAAy WAA> and WA>A> are then 
functions of the relative frequencies within the group of alleles of the 
gene under consideration, but not of qA. 

In previous general discussions (for example [35, 36]) I have re­
stricted myself to this convenient model of selection pressure. As this 
has given rise to misapprehension [5], it should be emphasized that 
it applies only under the conditions implied in its derivation. 

If there are selective differences between the sexes, as is very likely 
to be the case, there are departures from random combination within 
series of alleles. These are, however, unimportant for most purposes 
unless there is rather strong selection. 
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Selection itself tends to bring about departures from random com­
bination among different series of alleles. Again the effects are unim­
portant in most cases, especially if all relative selective differences are 
slight. 

The formula must be written in a more generalized form to include 
polyploidy [32] and sex linkage. For small selective differences in a 
2&-ploid 

9A(1 ~ ÇA) dW 
(5) AqA = = • 

2kW dqA 

This applies (approximately) under sex linkage if & = 3/4 and 
W = (WmWf)1/2 where Wm and W/ are the mean selective values in 
males and females, respectively. 

There may be departures from random mating because of a con­
stant tendency toward mating of relatives, giving the following geno-
typic frequencies within a series of alleles [23, 3] . 

Genotype Frequency 

AA (l-F)q2 + Fq 
AA' 2(l-F)q(l-q) 
A'A' ( 1 __ j p)( 1 _ g ) 2 + F ( 1 _ g ) 

Random combination between series of alleles is not disturbed ap­
preciably if the selective differences are small or if the inbreeding 
coefficient F is small, giving the following formula in which WR and 
Wi are mean selective values of the random bred and inbred compo­
nents of the frequencies relative to the A series [3 ] 

^ ( ï - ^ ) r ( i -F) dWR dWn 
AqA = ___ 1_ F 

W L 2 dqA dqAJ 
(6) 

= g*(1 "" qA) \dW , F
 d W l l 

2W UqA dqAJ 
Inbreeding that leads to subdivision into partially isolated groups 

is best dealt with by a different mathematical model. 
Under assortative mating based on similarity in characteristics 

there are very great departures from random combination of different 
series of alleles [20 ]. Again we may best consider such a mating sys­
tem as one leading to subdivision of the population into partially iso­
lated groups. 

Returning to consideration of random breeding populations, it may 
easily be seen that if the Ws are functions of qA 
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2W ldqA ^X dqjl 

Intra-brood selection is an example of a case in which dW/dqA = 0 
but gene frequency nevertheless changes. As in our model case, the 
process does not necessarily lead to fixation of the most favorable of 
the genotypes possible from the genes present in the population. 

Finally, if the genes under consideration affect the system of mat­
ing itself, as is the case of the self-sterility alleles of many plants [33] 
or of genes that determine self fertilization [5], the changes in gene 
frequency can only be found from the composition of the population 
in successive generations. 

We may note here that while, in principle, selection must be con­
sidered to apply to the organism as a whole, one may analyze the 
organism into character complexes which evolve largely independ­
ently through changes in largely independent systems of genes, the 
components of which are distributed at random among the chromo­
somes. The case which we have chosen as a model of selection pres­
sure (4) and its generalization (5) should apply sufficiently well to 
most reaction systems in freely interbreeding populations and gives 
an insight into certain aspects of the effects of selection which cannot 
be obtained as easily from the more complex special cases. 

If a character complex is affected by n loci and m» alleles at a par­
ticular locus, it requires 

Ê fa -1) 

dimensions to represent the system of gene frequencies and 

n 

I I [m(nn + l)/2] 

kinds of genotypes are possible. Assuming that the relative selective 
values of these genotypes are independent of their frequencies, the 
mean selective values (W) of possible random breeding populations 
form a surface relative to this multi-dimensional system of gene fre­
quencies, the gradient of which determines the way in which the pop­
ulation tends to change under the influence of selection. The number 
of loci that may affect even the simplest characters are known in 
certain cases to be great and many, if not all such loci are probably 
represented at all times by multiple alleles. Thus the number 
JJ^= 1mi of homozygous types possible from genes actually present in 
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a species and affecting a particular character complex may often run 
into astronomical figures. Under these conditions it is to be expected 
that in general the surface W for any character complex will have 
numerous peaks, corresponding not only to different combinations of 
genes that give the same character [29] but also to different harmo­
nious combinations of elementary characters that permit the organ­
ism to overcome the same conditions in different ways. 

Mutation, immigration and selection may all be occurring simul­
taneously. The net rate of change of gene frequency may be obtained 
by simply adding the contributions of these factors (1), (2), (4), if 
these are small. In our ideal case of a random breeding population of 
diploid individuals subject to reversible mutation, immigration and 
constant selective differences between genotypes [27, 30 ] 

q(l - q) dW 
(8) Aq = v(l - q) - uq - m(q - qt) -{ — — • 

IW oq 

There is equilibrium, stable or unstable, if Aq = Q. With reversible 
mutation, there must be at least one gene frequency other than 0 or 1 
that is in stable equilibrium. There may also be stable equilibrium 
as a result of opposing selection pressures alone. 

Accidents of sampling. There is another possibility of change of 
gene frequency to be considered. In a population that is not indefi­
nitely large, gene frequency may be expected to change from genera­
tion to generation merely from the accidents of sampling. The 
composition of a population of N diploid individuals depends on 
that of 2N gametes produced by the preceding generation. If these 
are a random sample from the array [(1 —q)A''+qA ], the probability 
array for values of q in the next generation is [(1 — q)Af+qA ]2N with 
the standard deviation (q(l—q)/2N)112. We will call a random devia­
tion of q of this sort ôq in contrast with the systematic deviation Aq 
produced by mutation, migration or selection 

(Q\ 2 g ( 1 ~ q) 

(9) . . . - - ^ - • 

I t might seem that these random deviations would be negligible in 
any reasonably large population but in the absence of any systematic 
pressure toward equilibrium, the squared standard deviation for later 
generations increases approximately with the number of generations 
until there is an approach to the limiting value q(l— q) of complete 
fixation, [(1 — q)A'A'-\-qAA ]. The exact value for the nth generation 

file://-/-qAA
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is q(\ — q) [l — (1 — l/2iV)w]. The rate of fixation of heterallelic genes 
approaches 1/2N per generation. 

The effective value of N should often be much smaller than its ap­
parent value [27, 35]. I t obviously applies only to individuals that 
reach maturity. If there is cyclic variation in population size, N is 
more closely related to the minimum than to the maximum number. 
I t is also reduced if there is excessive variability in the number of 
mature offspring from different parents. 

In a 2&-ploid population [32], 

2 g(l — q) 
(10) <T8q = approximately. 

For sex linked genes it is approximately q(l—q)[2/9Nf+l/9Nm] 
where Nf and Nm are the effective numbers of females and males, re­
spectively, and thus is 2q(l—q)/3N if these are equal. 

The distribution of gene frequencies in the case of equilibrium. 
The tendency toward a stable equilibrium in the value of q, found 
when there are opposing systematic pressures, and the tendency to 
drift away from this point, due to the sampling variance, should re­
sult in a probability distribution which one might expect to find real­
ized by the values taken by the frequency of a particular gene over 
a long period of generations in the ideal case of a population in which 
all conditions remain constant. I t would also be the distribution of 
values of q taken by this gene at a given time in an array of completely 
isolated populations, all of which are subject to the same conditions. 
Finally, all genes subject to systematic pressures of the same magni­
tude should exhibit such a distribution at one time in a single popu­
lation. While these are ideal cases, not likely to be approached in 
actual cases, it is of primary importance in the genetics of populations 
to be able to reach conclusions on the nature of such distributions. 

The distribution of gene frequencies in the case of equilibrium must 
satisfy the conditions of stability of the mean 

(q + Aq + dq = q) 

and stability of the variance ((T(|+A<H-S<Z) = öi). The possible values of q 
must range from 0 to 1. I t is convenient to use integration for sum­
mation in expanding these expressions. Let cj>{q) be the ordinate of 
the required distribution. The formula of the distribution may be de­
rived as follows [30, 3 l ] 

I (q + Aq + bq)4>{q)dq = I qcj>(q)dq, 
J 0 * 0 
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f (q + Aq + 8q - q)*<Kq)dq = f (q - q)*<Kq)dq. 
J o J o 

Since the mean value of ôg is 0 and since ôq is not correlated with 
(q-\-Aq), these reduce to the following, omitting a term involving 
(Aq)2, negligible if Aq is small 

ƒ. 
l 

Aq<t>{q)dq = 0, 

2 1 (g - q)Aq<t>{q)dq + I <j]q<t>(q)dq = 0. 
•̂  o ^ o 

Let fAq(j)(q)dq = x(ç) a n d integrate the first term of the preceding 
equation by parts 

x(D - x(o) = o, 

f x(q)dq ~ fex(0) + (1 - <z)x(D] ~ (1/2) f <rUfa)dff = 0. 
•/ o *J o 

It may be found by trial that both of these conditions are satisfied 
by the following equation if 0(0) and 0(1) are finite. Note that 
(j\ = 0 if q = 0 or if q = 1, since there can be no sampling variance un­
less there are alternatives 

X(q) ~ x(l) = (1/2VU(<Z), 

dx(q) lAqdq 
<*log \x{q) - x ( l ) ] 

x(q) - x(l) <rlq 

[X(q)-Xd)]=jef^)d\ 

( ID *(«) = ( C A : > 2 / ( A ^ ^ " , 

where C is a constant such that J^(q)dq = \. 
The frequency of a particular value of g is approximately f(q) 

= c/>(q)/2N. The amount of exchange between the sub terminal and 
terminal classes is approximately half the frequency of the former 
from consideration of the Poisson distributions of the classes that are 
close to fixation [27]. 

For the model case in which Aq = v(l — q) — uq — m(q — qt) 
+ (q(l~q)/2W)(dW/dq) and <4 = g(l -q)/2N equation (11) reduces 
to the following 
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<f)(q) = cWiNqWim("+v)~1(l — c)w[»'(i-«()+»]-ij 

/(0) =f(l/2N)/iN[mqt + v], 

ƒ(!) = ƒ(! - l/2N)/iN[m(l - qt) + «] . 
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V̂  J' 

F I G . 1 F I G . 2 

y 
/ 

/ 
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/ 
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\ 

,V —' v - •" \ 

F I G . 3 F I G . 4 

Figures 1 to 3. Some of the forms taken by the distribution of frequencies of a 
completely recessive gene. Mutation rates are assumed equal in both directions (u = v). 
N=l/4:0v in Figure 1, 10/40?; in Figure 2 and 100/40z> in Figure 3. In each case the 
solid line represents the least selection {t— — v/5), the long dashes represent selec­
tion 10 times as severe (omitted in Figure 1 since practically indistinguishable 
from the preceding) and the short dashes represent selection 100 times as severe 
0(g) = Ce™tQ2

qWv-l(l _fl)4MML# 

Figure 4. Frequency distribution of a semidominant gene in subgroups of a large 
population in which the varying conditions of selection among subgroups has lead to a 
mean gene frequency, <̂  = .25. The subgroups represented are assumed to be of the 
same size (iV = 1000) and subject to the same selection pressure (WAA — 1, WAA> = .9975, 
WA'Af = .995) but to different degrees of isolation (long dashes: m = .01, short dashes: 
m = .001, do t sm = .0001),^(g) = C^10V000m~1(l-2)3000w~1-

This brings the effects of reversible mutation, crossbreeding, selec­
tion and size of population into a single formula. Figures 1 to 4 show 
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the forms taken by this distribution in certain special cases. The 
[/-shaped distributions in small populations (Figure 1) may be com­
pared with the /-shaped ones in large populations (Figure 3). The fig­
ures bring out the relatively slight effects of selection in small popu­
lations. 

The joint frequency distribution for multiple pairs of alleles may 
be written as follows for the model case that we have been consider­
ing [30] 

n 

(14) 4>(qlt q2, • • • , qn) = CW2NJl g^(~««+^)-i(1 _ g.)4*[««i-g,<)+u<]-i# 
t=»i 

This applies to 2&-ploids if 4Nk is substituted for 4iV in the expo­
nents of qi and (1 —#»•)• In the case of sex linkage and equal numbers 
of the sexes, 3N is to be substituted for 4N in these exponents. As the 
exponent of W is not affected in these cases, the formula applies to 
joint distributions including different degrees of ploidy (aneuploids) 
and both autosomal and sex-linked genes. 

Figure 5 illustrates the frequencies along two diagonals of the joint 
distribution for two pairs of alleles which act cumulatively on the 

F I G . 5 
The frequencies along the diagonals of the joint distribution for two series of alleles 

with equal and additive effects on a character on which adverse selection acts accord­
ing to the square of the deviation from the mean (WAAW — WAaBb^ WaaBB = l, 
WAABb—WAaBB=WAabb=WaaBb=l—s, WAABB = Waabb = 1 — 4s). The solid line shows 
the frequencies along the line connecting the two favorable types, A Abb and aaBB. 
The dashes show the frequencies along the line connecting the extreme types AABB 
and aabb. In the case shown, ua — va = Ub = vi), N—l/2va, s = 5va. 

same character of which the midgrade is optimum. There are two 
peak frequencies corresponding to approximate fixation of two differ­
ent genotypes that give the midgrade of the character. In cases in­
volving large numbers of genes there may be an indefinitely large 
number of peak frequencies. 

The distribution of gene frequencies under irreversible mutation. 
It is also important to determine the form taken by the distribution 
of gene frequencies when fixation of one of the alleles is an irreversible 
process. The distribution curve should reach constancy of form, but 
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all class frequencies (except that in which fixation is occurring) should 
fall off at a uniform rate K. The conditions may be expressed as fol­
lows [3l] 

T+Â^Tty = (i _ K)q + K, 
2 2 2 

o-(<H-A<z+s<z) = (1 — K)aq + K(l — q) , 
K = ( l /2) / ( l - 1/2N). 

It can be found by trial that with mutation at rate v, no selection, 
and o$q = q(l—q)/2N those conditions are satisfied by the following 
equation, with decay at rate K—v per generation [3l] 

(15) f(q) = 2vq™-K 

I have not been able to obtain a general solution comparable to 
equation (11) but formulae have been obtained for an important 
class of cases by another method [27, 30, 31 ]. Random breeding 
diploid populations with frequency array [(1— q)A'+qA] are dis­
tributed in the following generation according to the expression 
[(l-q-Aq)A' + (q+Aq)A]2N. Letting p = l-q, the contribution to 
the frequency ƒ (qc) of populations characterized by gene frequency qc, 
is thus[(2N)l/(2Npc)l(2Nqc)\](p-AqyNVc(q+AqyN«cf(q). The condi­
tion that this frequency be reconstructed after a generation except 
for a reduction by the amount K can be represented sufficiently ac­
curately as follows : 

T(2N) rl 

(1 ~ K)<t>{qc) = W 0 ^ x W 0 „ v (P - *q)2NHq + AqyN««i>(q)dq. 
pcqcT(2Npc)T(2Nqc) J 0 

UK = 0,Aq = 0, this equation is satisfied by 0(g) = Cq~l+D{\ —q)~l 

for any values of C and D. For irreversible mutation at rate v, it 
yields equation (15) and for migration and reversible mutation, but 
no selection, the same result as obtained from equation (12) [27, 31 ]. 

Selection pressure gives more difficulty. An important case that can 
be solved is that for very rare mutations (4i\fo negligibly small) sub­
ject to selection pressure of the fairly general form Aq = (s+tq)q(l — q). 
Here K may be taken as 0 

2Nf(qc) =A f pwpcqwocli _ q(s + tq)]™v°[l + p(s + tq)]w^(q)dq9 
J 0 

where 

A = ^ i 
pcqcT(2Npc)T(2Nqc) 
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The following approximate relations may be used 

[(1 - q(s + tq)]2N^ = e-2**c«(-+«a)[l _ Npcq
2(s + lq)2], 

[(1 + p(s + tq)]2N«c = ^ M C + « « ) [ I _ Nqcp
2(s + tq)2]. 

Let (/>(q)=e2Ns«+Nt«\C0+Ciq + C2q
2+ • • • )/q(l-q) and use the 

approximate relation 

r ( 2 # ) 

i J Q 

p2NVc-lq2Nqc--l+xclq 

T(2Npc)T(2Nqc) , 

= ft + bo*"1 - gf][x(* - 1)/4.V]. 

It may be found that Cm = [(4N2s2 + 2iW)Cw_2 + 8N2stCmJ 
+4iV2/2Cm_4]/w(m + l) ignoring terms in which the exponent of N 
is less than the sum of those of s and t. After further reduction 

(16) f(q) = [Ce*Ns«+2Nt«2 + Dqe2Ns^Nt^{2Nsqy 2Ntq2)]/q(l - q) 

where C and D are any constants and \p(a, b) is as follows 

a2 a4 a6 a8 

f(a, 6) = 1 + — + — + — + — +•• • 
3! 5! 7! 9! 

r 1 2a2 3aA 4a6 1 
+ 6(1 + «) I — + — + — 7 + — 7 + M 5! 7! 9! 

2a 69a2 6a3 282a4 12a5 

+ b21 — + — + + + + + 
-' 5! 7! 7! 9! 9! l_5! 

T27 

T321 

'LÛT 

27a 348a2 204a3 

+ ô8|—+ + + + 
7! 9! 9! 

•321 132a 

+ *!— + — + 
T2265 "1 

+ , | _ + . . . ] + .... 
The special cases of most interest are those of irreversible mutation 

in one direction or the other and of equilibrium. Consider a popula­
tion in which 2Ns and 2Nt have given values but N is indefinitely 
large and hence s and t are indefinitely small. If mutation is occurring 
from the class q = 0 at an exceedingly minute rate v with irreversible 
fixation in the class q = l, the frequency of the subterminal class, 
q = 1/2N, must be approximately 4Nvf(0) while that of the other sub-
terminal class (q = 1 — 1/2N) must be so much smaller as to be neg­
ligible. The following are sufficiently accurate, letting /(O) = 1 
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f(l/2N) = 2 ^ + - ^ ] = 4A^, 

/ ( l - 1/2N) = 2N[CeŒs+2Nt + De2Ns+Nty(2Ns, 2Nt)\ = 0. 

As \p(2Ns, 2Ni) is of the order of e
2Na+Nt, D/2N is negligible com­

pared with C 

C = 2v, 
2ve2Ns+Nt 

D 
yP(2Ns, 2Nt) 

2v f ÂW , . _ _ , %4(2Nsq,2Ntq*y 2v r 2 t(2Nsq, 2Ntq2)l 

^ W g(l — g) L 4,(2Ns,2Nt) J ' 

In the sub terminal regions selection is practically inoperative, 
Aq=s/2N, approximately for q = \/2N; and Aq = (s+t)/2N for 
g = (l — 1/2N). The formula of the curve in the neighborhood of 
q = 1/2N is therefore approximately 2v/q. Thus with given v but dif­
ferent values of N, f(l/2N)(=4:Nv) always falls very nearly on the 
same smooth curve. The relation between the selection pressure and 
the sampling variance (which measures the additive effect of sam­
pling) is constant for given values of 2Ns, 2Nt and q, (Aq/a2

Sq) 
= (2Ns + 2Ntq). Thus the smoothed probability curve, ƒ(<?), should 
be the same throughout with given 2Ns and 2Nt irrespective of the 
values of N and of s, t separately. Thus equation (17) is the general 
formula for the case of irreversible mutation from the class at q = 0. 

The determination of \p(a, b) in specific cases is a rather formidable 
task since it involves two variables and converges slowly. For the 
case of semidominance however, t = 0 and \p(2Nsq, 0) reduces to 
(e2Nsq-e~2Nsq)/4:Nsq 

2v (1 - éT^u- t f ) ) 

(18) f(q) = — ±— — - • 
q(l - q) (1 - e~*Ns) 

This agrees with a result obtained by Fisher [4] by a different 
method, involving a transformation of scale (ö = cos~1 (l — 2q)) de­
signed to make sampling variance uniform, and expression of the 
conditions in the form of a differential equation. The chance of fixa­
tion of a mutation in this case is given by the ratio of the subtermi-
nal classes (f(l-l/2N)/f(l/2N)) and is thus 2s/(l -e~ANiS) where 5 
is the selection favoring the hétérozygote. This is practically constant 
(2s) in large populations. There is a small chance of fixation of even 
unfavorable mutations (2s/(e*Ns— 1). Figure 6 illustrates the distribu-
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tion curve for various intensities of selection (but with the selection 
favoring hétérozygotes represented by (1/2)5 instead of 5). 
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Figures 6 to 9. Distributions of gene frequencies under irreversible mutation at 
indefinitely low rates (v). Six cases are shown in each figure. Dash and two dots, 
s= —4/2N; dash and dot, 5= —1/2N; solid line, 5 = 0 (f(q)*=2v/q in all figures); long 
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In the case of recessive mutations, s = 0 and Aq = tq2(l — q). The law 
of the series for ^(0, b) is that £ m = (£m_i+Em_2)/2m(2m —1) where 
Em is the coefficient of bm. The distribution curve for a number of 
values of 2Nt are shown in Figure 7 (but with 5 instead of / as the 
selection coefficient). The chance of fixation was determined empiri­
cally from the ratio of subterminal frequencies up to 2Nt = 12. For 
larger values (up to 2iV7 = 64) it was more convenient to calculate it 
from the ratio of the flux (2N Aqf(q)) in the region of maximum Aq, 
(q = 2/3) to the proportion of mutations (2Nv) (usable only for large 
Aq/o%Q). For values of t ranging from 4/2iV to 64/2iV the average 
chance of fixation came out l.l(//2iV)1/2, apparently approaching 
(t/2N)112 and thus a function of N even in large populations contrary 
to the case of semidominance. 

In the case of dominant mutations, Aq = (s — sq)q(l — q) if mutations 
are taken as occurring from the class q = 0. It is more convenient to 
assume that they are occurring from the class q = 1 (Aq = — sq2(l —q)) 
since this merely requires evaluation of ^(0, —2Nsq2) instead 
of the two-dimensional series \l/(2Nsq, — 2Nsq2). From consid­
erations analogous to those discussed above, it appears that for 
Aq = (s+tq)q(l— q) but irreversible mutation from the class at g = l, 
C = 0, D = 2ve~2Ns~Nt/\l/(2Ns, 2Ni) to a sufficient approximation, 

2v r 2 f(2Nsq, 2Ntq2)l 
(19) f(g) = qe~2Ns(i-q)--Nt(i-q*)L± 1 11. I 

g(l - q)l 4,(2Ns,2Nt) J 

dashes, s = l/2N; short dashes, 5 = 4/2iV; dots, s = 16/2N. The ordinate at q=l/2N 
is the same for all curves (f(q) = 4i\fo) and far above the range of the figures (except 
in the case s = 16/2N, Figure 9, in which all ordinates are greatly reduced). 

Figure 6. The case of a semidominant mutation A' (WAA — 1, WAA' — 1-\-S/2, 
WA'A,SSS1-\-S). The probabilities (P) of fixation of a mutation are as follows: For 
s=-4/2N, P = 0.075/2iV; for 5 = - l / 2 i V , P = 0.58/2N; for 5 = 0, P = l/2iV; for 
s=l/2N, P = 1.6/27V; for s = 4/2N, P = 4.1/2N; for s = 16/2N, P = 16/2iV; for large s, 
P = s. 

Figure 7. The case of a recessive mutation a, ( W A A = WAO — 1, Waa — ^-\-s). For 
5 = - 4 / 2 i \ T , P = 0.12/2iV; for 5 = - l / 2 i V , P = 0.70/2iV; for 5 = 0, P = l/2iV; for 
5= l/2iV, P = 1.3/2iV; for 5 = 4/2iV, P = 2.3/2iV; for 5= 16/2iV, P = 4.3/2iV; for large 5, 
P = (5/2i\T)1/2. 

Figure 8. The case of a dominant mutation A {Waa — ^} WACL — WAA^I+S). 
For 5 = - 4 / 2 i V , P = 0.042/2iV; for 5 = - l / 2 i V , P = 0.49/2iV; for 5 = 0, P = l/2iV; 
for s = l/2N, P = 1.9/2iV; for 5 = 4/2iV, P = 6.6/2iVr; for 5 = 16/2iV, P = 31/2iV; for 
large 5, P = 2s. 

Figure 9. The case of a mutation .4 ', selected only in hétérozygotes ( WAA — WA'A' = 1, 
WAA> = 1+S). For 5 = - l / 4 i V , P = 0.23/2N) for s=-l/2N, P = 0.71/2iV; for 5 = 0, 
P = \/2N\ for s = l/2N, P = 1.4/2iV; for 5 = 4/2iV, P = 3.2/2iV; for large 5, P ap­
proaches 0 and all loci tend to become heterallelic. 
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Figure 8 shows the form taken by the distribution in special cases 
(with 5 as the selection favoring the dominant mutation and mutation 
taken as occurring from the class q — 0). The chance of fixation of 
favorable dominant mutation with large N is approximately 2s which 
is the same as for favorable semidominant mutations provided that 5 
is the selection favoring the hétérozygotes in both cases. This is to 
be expected since homozygotes are relatively rare until mutation has 
passed through the point of maximum selection pressure. 

Figure 9 shows the distribution curve in the case in which there is 
no selective difference between the homozygotes but selection favors 
or opposes the hétérozygotes. In this case in which Ag = s(l — 2q)q(l — q), 
formula (17) was used for values of 2Ns up to 4. For large values of 
2Ns, there is so little fixation that the distribution under equilibrium 
may be used. 

By combining the formulae for irreversible mutation in each direc­
tion in such a ratio that the amounts of fixation are equal, we obtain 
a distribution identical with that of reversible mutation occurring at 
rates at which £Nv and 4:Nu are negligible. The result agrees with the 
limiting value obtained from equation (12) 

(20) f(q) = ° [eM*™*]. 
g(i - q) 

The evolutionary process. I can go only briefly into the implica­
tions for evolution. We must distinguish two processes (a) the trans­
formation of a single population until it has become so different that 
a new species or higher category must be recognized and (b) the cleav­
age of species. 

Consider first the possibilities of transformation in a very large, 
closed, freely interbreeding population, living under conditions that 
are the same on the average for thousands of generations [28]. In such 
a population, random changes in gene frequency are negligible. Gene 
frequencies can change only according to the systematic pressures of 
mutation and selection, a process which must stop when all Aq's be­
come zero, unless there is a flow of untried mutations that are favor­
able from the first. We have a theory of the stability of species in spite 
of variability due to continually occurring mutations and in spite of 
continuous action of selection. 

A stable state of this sort may be far from being the most adaptive 
of the systems possible from the genes actually present. Consider here 
the situation with respect to characters to which our model selection 
pressure applies. As noted, many distinct peak values are to be ex­
pected in the surface of selective values, W, relative to the multi-
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dimensional system of gene frequencies. In a species located at a 
particular point in the system, each gene frequency will change un­
til all Aq's are zero. These changes will be such that the mean selec­
tive value of the populations changes approximately by the amount 
AW = X(AqdW/dq), the species moving up the steepest gradient in the 
surface W except as affected by mutation pressures [29]. It stops 
when AW = 0, a point in the neighborhood of the peak toward which 
selection has been directed, but not at the highest point because of 
the mutation terms in the Ag's. In general there will be other peaks 
on the surface W that are higher but the species cannot reach them. 

Perhaps, however, we have been too hasty in assuming that all Aq's 
would ever reach zero simultaneously. It is probable that the poten­
tial alleles at each locus form an indefinitely extended series in which 
any one allele can give rise to certain others, these to ones at two re­
moves from the first, and so on. A continual flow of untried favorable 
mutations may keep the population in a state of flux. In general, how­
ever, it would seem probable that the rate of the movement toward 
the equilibrium point indicated by the existing genes would be of a 
higher order of magnitude than the rate of elevation of this peak by 
the occurrence of mutations of this very unusual sort. 

In a population in approximate equilibrium, the variability due to 
the balance between mutation and selection is not likely to be great. 
If, for example, Aq = sq(l —q) —uq, q — 1 —u/s at equilibrium. As mu­
tation rates are typically of the order 10~~5 or less, q is close to 1 if the 
gene in question has an appreciable advantage. Loci in which there 
are opposing selection pressures would contribute more to variability. 
This may occur where a hétérozygote combines favorable effects of 
two genes (Ag of form q(l— q) [s2~(si+S2)q] with stable equilibrium 
at q = s2/(si+S2) if both Si and s2 are positive). It may also occur where 
different homozygotes have advantages in different ecological niches 
occupied by the species in such a way that the net selective values are 
related inversely to the frequencies (a case to which our model applies 
only approximately). With only one or the same few alleles main­
tained at high frequencies by the population the chance for the oc­
currence of fixation of untried favorable mutations at several removes 
from those present is small. The extreme improbability of such muta­
tions justifies use of the formulae for irreversible mutation at very 
low rates (4i\fo much less than 1) in spite of the fact that we are con­
sidering large populations (17), (19) (Figures 6 to 9). There is the 
possibility of an indefinitely continuing evolutionary process but the 
rate is restricted by the low probability of the necessary mutations 
and the incomplete utilization of the potentialities for adaptation pro-
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vided by the genes actually present (cf. however Fisher [4] and cri­
tique [26]). 

Conditions are, however, continually changing. Selection of in­
creased severity but unchanged direction merely carries the location 
of the system of gene frequencies closer to the peak and increases 
somewhat the chance for a novel favorable mutation to reach fixation. 
With secular changes in the direction of selection, on the other hand, 
peaks in the surface W may become depressed and low places ele­
vated. In species which are sufficiently labile to avoid extinction, the 
system of gene frequencies is kept continually on the move. It is 
likely to be shuffled into regions of W that are in general the higher 
ones. This process is undoubtedly of great importance for evolution­
ary change. 

In sufficiently small populations, the random divergences of gene 
frequencies from their equilibrium values become important. In very 
small populations, these tend to bring about approximate fixation of 
some random (and therefore, in general, non-adaptive) combination 
of genes (Figure 1). Moreover, while selection pressure is less effective 
in small populations than in large ones, mutation pressure remains 
the same. Random mutations are more likely to be degenerative than 
adaptive. Long continued reduction in the size of a population is thus 
likely to lead to extinction. On the other hand, the less extreme 
random variations found in populations of intermediate size (4Nv or 
4:Ns of the order 1 to 10) (cf. Figures 2, 3, 5) act somewhat like 
changes in the direction of the selection. The system of gene fre­
quencies is kept continually on the move and this gives a trial and 
error process which at times may lead to adaptive combinations which 
would not have been reached by direct selection. The rate of change 
of this sort is slow under the required conditions. 

Consider next a large population that is divided into many small 
partially isolated races. These may differ in size and degree of isola­
tion and in the direction and severity of the selection to which they 
are subjected. The conditions are present for an extensive testing by 
trial and error of a relatively large number of alleles at each locus and 
of different combinations of these. 

Local differences in direction of selection are effective if the selec­
tion coefficient s (writing selection pressure in the form Aq = sq(l —q)) 
exceeds the crossbreeding coefficient m (cf. Figure 4). While these 
differences are primarily of merely local significance, there is the pos­
sibility of acquirement of an adaptation that turns out to be of gen­
eral value which then may spread throughout the species. Moreover, 
if different alleles come to be characteristic of different races, the store 
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of variability of the species as a whole is increased. This is also true 
of each local race as a consequence of crossbreeding. 

In races in which 4Nm is of the order 1 to 10 there is considerable 
random differentiation without the approach to fixation in equally 
small completely isolated groups. Such changes may occur with con­
siderable rapidity in this case and while non-adaptive are not neces­
sarily anti-adaptive to an appreciable extent. It is merely that the 
location of the system of gene frequencies on the surface of selective 
values in our model case is not constrained to move up the steepest 
gradient but may move up gradients that are not the steepest and 
occasionally even down hill. Among the many local races exploring 
the neighborhood of a peak in the surface of selective values, one or 
more may reach a gradient leading to a higher peak (cf. Figure 10). 

/ 
I 

F I G . 10 

The frequencies along the diagonal (0, 0) to (1, 1) of the joint distribution of fre­
quencies of recessive genes, a and b in subgroups of the same size (iV=1000) but 
different degrees of isolation (long dashes: m = .01; short dashes: m ==.001; dots: 
m = .0001) in a large population in which the conditions are everywhere the same 
(each recessive with selective disadvantage of .001 relative to the type A —B — but the 
double recessive with an advantage .01 over type). With mutation rates ua = v(i = Ub 
— Vb= 10~5 there would be two positions of stable equilibrium, one at about (0.1, 0.1) 
which is assumed to hold for the major portion of the species for historical reasons, 
and one at about (.999, .999) which is more adaptive 

</>(?«, qb) = C[l - .002(qa + qb) + M2qaqb] (qaqb) [(1 - ?«)(1 - #>)] 

Local populations for which m = .01 vary only slightly from the frequencies character­
istic of the species. Most of those for which m = .001 show a close approach to fixation 
of the type genes {AABB) but occasionally there is an approach to fixation of the 
more adaptive double recessive. Those with w = .0001 are largely homallelic in aabb. 
In the long run such superior subgroups might be expected to pull the whole species 
to this position by intergroup selection. The scales are not the same in this figure. 
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By expansion of numbers and excess migration such races tend to 
bring the species as a whole under control of this peak. Intergroup 
selection of this sort, with respect to racial differentiation that has 
jointly adaptive and non-adaptive aspects, seems to provide the most 
effective mechanism for testing many alleles at each locus and many 
combinations of these and is thus the most effective mechanism for a 
continuing evolutionary process [26, 27, 28, 29, 35, 36]. 

It should be emphasized that we are not concerned here with local 
races as incipient species. As long as isolation is incomplete the races 
are bound together by crossbreeding and thus are carried along by the 
evolution of the species as a whole although subject to the minor 
kaleidoscopic changes in character which according to this theory 
play a major role in the evolution of the whole. 

The cleavage of species depends on virtually complete isolation of 
portions of the species from each other. Even if there are no signifi­
cant character differences at the time of separation and even if con­
ditions remain substantially the same for the two portions, the process 
described above will insure that they drift apart. Each continues to 
be adapted to the conditions but in somewhat different ways. They 
may be expected to move to increasingly more remote peaks on the 
surface W. In the course of time genie and chromosomal differences 
may be expected to accumulate that prevent crossing and so clinch 
the specific distinction. Before this point is reached, the occasional 
occurrence of hybridization may transfer blocks of genes from one 
species to the other or lead to the origin of a completely hybrid spe­
cies, presenting a mechanism of reticulate evolution, analogous to 
that described above but on a coarser scale (cf. [ l ] ) . 

Under certain conditions the multiplication and diversification of 
species may be a very rapid process. These include a relaxation of the 
general selection pressure on the species permitting great increase in 
numbers and great variability ; the opportunity for the occupation of 
widely distinct ecological niches associated with almost complete iso­
lation of the groups seizing these opportunities and with subdivision 
of these groups into partially isolated local populations. A species that 
is the first of its general kind to reach unoccupied territory finds most 
at least of these conditions realized. This is also the case with a species 
that by any means acquires an adaptation of first rate general sig­
nificance which gives its subgroups an advantage over species already 
established in various ecological niches, that more than compensates 
for the initial lack of special adaptations for these niches. 

The most general conclusion that can be drawn from the attempt to 
develop a mathematical theory of the simultaneous effects of all sta-
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tistical processes that affect the genetic composition of populations 
is that in general the most favorable conditions for evolutionary ad­
vance are found when these are balanced against each other in certain 
ways, rather than where any one completely dominates the situation. 
Finally it may be said that the more detailed knowledge of heredity 
and mutation that is now available confirms Darwin's general con­
tention that evolution is a process of statistical transformation of 
populations. 
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