
CONTINUA OF MINIMUM CAPACITY1 

G. C. EVANS 

1. Surfaces containing a given volume. In an endeavour to simplify 
a proof of Liapounoff [2], to the effect that in the problem of the 
forms of equilibrium of rotating liquids the sphere would be the only 
form for a liquid at rest, Poincaré [ l ] was led to the consideration of 
electric capacities of solids of given volume, and arrived at the result 
that among such bodies the sphere would have minimum capacity. 
The present paper originated in the question of the determination of 
the surface sheet, without volume, which would be bounded by a 
given closed curve in space, and, among all such surfaces, have mini­
mum capacity. 

In the discussion of his problem, Poincaré assumes tacitly that 
there do exist one or more bodies of the given volume, with smooth 
boundaries, which furnish relative minima for the capacity with re­
spect to neighboring forms; and his treatment amounts to a proof 
that among these the sphere furnishes the absolute minimum. 

Let the body F, with smooth exterior boundary S, be considered 
as a conductor on which a positive charge m is spread so as to be in 
equilibrium—that is, the charge lies entirely on the surface S with 
a surface density cr(P), and its potential V(M) has a constant value 
Vo within S, is continuous across 5, satisfies Laplace's equation 
V2V=0 outside S and vanishes at infinity. The density on S is given 
by the equation 

1 dV 
a(P) — ; n the exterior normal. 

AT dn 
The energy of the distribution may be written in the equivalent forms 

(1) ƒ = — f (vV)2dP = — f (Vl +vl+ vl)dP, W = entire space, 

(2) I = — f <r(P)V0dP = èwFo. 
2 J s 

The capacity of K of F is defined by the equation 

(3) KVo = m or I = — - = \KV\. 

1 Presidential address presented to the Society, January 1, 1941, under the title 
Surfaces of minimum capacity. 
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According to Poincaré, the variation dl of / due to a displacement 
of the points of S, along normals, of amount 8n(P) = e^(P) is given 
by the equation 

(4) SI = - - 6n(P)(vVydP = - - HP) ( — ) <*P, 
OX J 5 Ö7T J s \dn / 

the integral of the variation of the function V(P) itself being negli­
gible since the conductor distribution is in equilibrium. Tha t (4) thus 
follows from (1) is not altogether evident. I t may be justified, how­
ever, in the following way. 

Let Si be the displaced surface, Pi, Qi points on Si corresponding 
to points P , Q on S. Since for a given total mass m on 5 the energy 
for a conductor distribution is a minimum, I will have a stationary 
value for small changes of the distribution m{e) of rnt and we may 
neglect such changes. Hence we may assume the relation 

A J = — I dm(eQ) I I )dm(ep)t 

the potential at an arbitrary point M being given by the formula 

(T(P) r dm(eP) 
V(M) = f — dP = f 

Js MP Js MP 

We substitute 

1 1 

VPiGi PiQ/ + \PiQ PQ/ PXQI PQ \P iCi P i Q / \PiQ PQ. 

and change the order of integration in the integral of this second pa­
renthesis, at the same time interchanging P with Q and P i with Q\ 
so that we shall have 

A/ - ^ « ^ { ( J L - Ĵ .) + (A. _ JL)}.^*. 
We denote by Fi((?') the potential of the displaced mass at some 
point Q' between Q and Qi, and by V(Q") the potential of the origi­
nal mass at some point Q" between Q and Qi- Then 

We assume that S and Si are sufficiently smooth so that cr(Q) is 
bounded and so that the derivatives of the potential approach the 

file:///PiCi
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limits given by the usual well known formulae, as € tends to zero. 
Then 

/dV \ r cos («Q, QP) 

c->o \dn/Q>> J s PQ2 

/dVA r cos (WQ, QP) 
lim ( — ) = ± 2T*(Q) + K~£^a(P)dP, 
e-0 \dn/Q> J 8 PQ2 

the upper sign being employed when $(Q)>0, the lower when 
^ ( 0 < O . Hence, for ôl = e lime_*0 (A//e), we have the value 

ƒ /• cos (nQ, QP) 
*(Q)*(Q)dQI — ~ ~ * ( P ) d P . 

s J s PQ2 

Inside the conductor the potential is constant, so that as a point 
approaches 5, from inside, the value dV/dn- is zero. Accordingly, by 
combining the first two of equations (5), we have 

dn+ J s PQ2 
a(P)dP. 

Thus the formula (6) for 57 reduces to the value given by (4). 
In order that the capacity be a minimum, with given volume, it is 

necessary that 51 = 0, where SI is given by (4) and ^ (P) is subject to 
the condition 

ƒ. f(P)dP = 0. 

I t follows therefore that (dV/dn+)2 is constant on 5, and since 
d V/dn+ = — 4x0-, we have 

(7) <r(P) = const, on S. 

Moreover, since now a is constant on S, we may write the formula for 
57 in the form (the total mass m of course remaining unchanged) 

07 = dK = - 2ira2dr 
2K2 

in which the volume is changed, and dr and dK are corresponding 
differential changes of volume and capacity. For such changes, then, 

SHK 
= 47rJr. 

K2 
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Suppose now that the body is deformed so as to remain similar to 
itself. Its capacity will change in the ratio of corresponding lengths, 
so that 

dK 1 dr 

K ~ 3 r ' 

and, in the case of bodies for which (7) is satisfied, 

1 S2 

\2TT T 

The sphere satisfies the condition (7), and it has the smallest 5 for 
a given r. Hence if there is any smooth S which has the minimum 
capacity for a given volume, the sphere is that body. 

Incidentally, we notice that if we make no requirement about the 
volume, but consider the surface merely as a sheet or cap, bounded, 
for instance, by a given closed curve in space, the requirement that 
the capacity be a minimum implies, if 5 be sufficiently smooth, that 
5 / be zero, as given by (6). Since there is no restriction on yp(Q) in the 
neighborhood of any point of 5, not on the boundary, we have the 
relation 

r cos (nQ,QP) _ = ç cos ( „ , QP) 

J a PQ2 J s PQ2 

By means of the first of (5) the equation (8) may be written in the 
form 

dV dV 
(8') — + — = 0, 

dn+ dft-

where, of course, we still have the relation 

dV dV 
( 8 " ) = - 4TT<7. 

dn+ dn-

2. Capacity and logarithmic potential. In the discussion of the sta­
bility of the form of a rotating liquid, and in particular the spherical 
form of a liquid at rest, Liapounoff treated the second variation of the 
energy integral and showed it to be positive. Poincaré endeavored, as 
we have mentioned, to provide a simpler treatment for this special 
case. But in order to complete the problem in a satisfactory manner 
without assuming the existence of a smooth form for which capacity 
is a minimum further details are necessary. The possibility of a fuller 
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use of fundamental inequalities for this purpose was noticed by Faber 
[3] and Szegö [5]. This use is sufficiently illustrated in some corre­
sponding, but perhaps more difficult, problems in the plane, and ac­
cordingly we turn to those. 

For the plane, as in space, the capacity is to be regarded as an 
index of the charge which is necessary in order to raise the body to a 
given constant potential Vo. The equation Vo = rn/K, however, if car­
ried over to the logarithmic potential has the disadvantage of yielding 
infinite and negative capacities. A more satisfactory definition, espe­
cially from the point of view of the complex variable, is given by 

1 
(9) Vo = m log — ; K = e~v^m. 

K 
This is the one which we adopt. I t is equivalent to the "transfinite 
diameter." By means of it, capacity is of dimension one in length 
in the plane (as in space), with regard to transformations of similarity, 
and the capacity of a circle (like that of a sphere) is equal to its radius. 

Given an arbitrary bounded closed set F in the plane it may not be 
possible to distribute the mass m on F in such a way that the po­
tential will remain constant everywhere on F because the frontier s 
which bounds the infinite domain T exterior to F may not consist en­
tirely of points which are regular, with respect to T, for the Dirichlet 
problem with continuously given boundary values on s—for example, 
if s has isolated points. We can however approximate to T by a nested 
sequence of domains the boundary of each of which consists of a finite 
number of closed simple analytic curves, and thus define K by the 
obvious limiting process. In particular, if for a given m the potential 
Vo does not remain bounded in the limit, the capacity of F is zero. 

Accordingly we may limit ourselves to the sets F whose exterior 
frontiers consist only of points regular with respect to the Dirichlet 
problem. Let u(M) be the potential of unit mass on F distributed 
so as to have constant potential Vo on F. Then, with r = OM where O 
is any fixed point, 

1 
u(M) = log — + H(M) = - log r + H(M) 

r 

with H{M) a function which is harmonic in T and vanishes at infinity. 
Consequently the function (a special case of the Green's function) 

V(M) = Vo - u(M), 

becomes infinite like log r a t 00 and vanishes on F. In fact, 
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(10) V(M) = log r - G(M), G{M) = H(M) - F0, 

where G(M) is harmonie in T, and regular at <*>, at which point it 
takes on the value G(<x>) = — VQ. We have therefore 

(11) K = e°^\ 

We follow now the procedure as sketched briefly by Szegö for analo­
gous problems [S]. Consider the level curves V(M) =X of the func­
tion V{M). For X>0 these curves have no points in common with F 
since the points of the boundary s are regular; except for a finite 
number of values of X, provided that X is bounded away from 0, the 
locus V(M)=\ consists of a finite number of simple closed analytic 
curves [6, b ] , and for large values of X of a single piece. We denote 
this locus (and also its total length) by Cx, the total area inside it by 
A\ and the exterior normal direction by n. Thus limx-o -4\ = meas. F. 

We have 

/

• dV dA\ r dn 
ds, = I ds, 

c\ dn d\ J cx dV 

the first equality being an expression of the fact that V is harmonic 
except for the additive term log r. But by Schwarz's inequality and 
the isoperimetric inequality applied successively, we have 

(12) 

dAx 
2ir 

d\ JM)l*fM)l* 
(j>y Cx ^ 4TT^X. 

Cx 

Thus (l/A)dA/dk^2, and 

l o g ^ x - log^X l ^ 2 ( X - X i ) . 

Hence if we let Xr-»0, we have 

Ax è (meas. F)e2\ 

In this expression we now let X—» oo. For large values of X we may 
use polar coordinates, and write, since r = eKe0{M\ 

= — I r*d$ = |e2X I e2°Wdd. 
2 J o «̂  o 

Consequently 



1941] CONTINUA OF MINIMUM CAPACITY 723 

1 r2ir 

— e2°(M)dd > meas. F ; 
2 Jo 

and if we let X—»oo so that G(M)-+G(<x>), we shall have 

0 

Hence 

(13) TTK2 ^ meas. F. 

The equality sign in (12) can hold only if it holds identically in X; 
that is, by Schwarz's inequality, only if dV/dn and dn/dV are pro­
portional on each C\ so that dn/d F is a function of X and the C\ form 
a set of parallel curves, and by the isoperimetric inequality, only if 
the C\ are circles. In this case F is a circle and its radius is K. Since 
the difference of the two sides of (13) represents the integral from 0 
to oo of a not negative quantity, the same result holds for the equality 
sign in (13). 

The inequality (13) holds for any bounded closed set F. In fact, 
both sides of the inequality are obtained by the same process in terms 
of a nested sequence of approximate domains. But other sets besides 
the circle, if F is not a single continuum, satisfy the relation TK2 = F. 

3. Applications of conformai mapping. Except for a rotation and 
translation, a conformai transformation which maps the exterior of 
a bounded continuum F in the z plane into the exterior of a circle of 
radius r in the w plane, without distortion at oo, may be written in 
the form 

oo 

(14) z — w = ] £ anw~n. 
l 

The radius r is called the Robin constant. We find that r = K, where K 
is the capacity of F. This is seen immediately by comparing (14) with 
the transformation 

(15) w = re (̂*)+W*> 

where U(z) = U(M) is the function conjugate to V(z) = V(M), and by 
noting the value of \dw/dz\ in (15) at oo. 

A direct calculation from (14) in this case shows that 

oo 

meas. F = 7rr2 — T^ nr~2n \ an\
2
y 

i 
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so that in particular meas. F^7rr2
f which is a special case of (13), and 

(16) I « i | ^ r2-

On the other hand, if A is an interior domain in the Z plane, con­
taining the origin, which is mapped conformally on the interior of a 
circle \W\ = i? so that Z = 0 goes into W = 0 and there is no distortion 
at Z = 0, the transformation, except for a possible rotation, may be 
written in the form 

00 

(17) Z = W + JjP»W\ 
2 

Hence 
oo 

A ^ TTR2 + 7r£ n \ @n |2#2n ^ ^ £ 2 . 
2 

By means of the transformations 

1 1 
W = — ; Z = — 

w z 
the situation is reduced to a transformation of exterior domains, in 
which r = l/R. But the transformation of these exterior domains is 
given by 

/ 1 °° V 1 

z = I h £ 0«w-» ) = w(l + fcw~l + fow-* + • . . )-i 
\ W 2 / 

Consideration of the resulting univalent relation between branches of 
z' = s1/2 and w' = w1/2 yields immediately, by (16), the relation 

i i 2 

| A | S 7 -

The above results, which are involved in a direct comparison of the 
coefficients of the power series are of course well known. But also 
other known results are obtained in terms of them by means of ele­
mentary statements about capacity. From the definition of capacity 
and the fact that Vo is the potential due to a distribution of positive 
mass, there follows easily the statement that if F\ is contained in F2, 
or is the orthogonal projection of F2 on a line, then K(F\)^K(F2). 
By means of the conformai transformation2 

2 This is the base transformation for the study of aerofoils. 
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(18) w = J(* + (*2 - a2)1/2) 

in which w= (l/2)(x-\-(x2 — a2)1/2) when 3 = x is real and > a , the re­
gion exterior to the segment ( — a, 0), (a, 0) is transformed into the 
exterior of the circle | w\ = a / 2 , without distortion when z = <x>. Hence 
the capacity of a line segment of length 2a is a/2. Moreover the ca­
pacity of a segment of a straight line of length / is less than that of a 
collection of segments of the line of the same total length /. 

Let p be the projection, of linear measure /,-on an arbitrary straight 
line, of the closed bounded set F. Then K(p)^l/4 and K(p)^K(F). 
Hence 

(19) I ^ 4K(F). 

The theorem expressed by (19) was proved in slightly less general 
form by Pólya, by the application of Tchebytchef polynomials in the 
definition of transfinite diameter [4]. 

Consider again an interior domain and the transformation (17). 
Let d be the minimum distance from O to a point of the boundary 
of Ay R the radius of the corresponding circle in the W plane, there 
being again no distortion at the origins, which correspond. We have 
immediately the Koebe result: d*£R/4. In fact, there is a point P 
on the boundary of A such that OP = d. Its image P' is a point of Fy 

where F is the complement of the infinite domain obtained from A 
by the transformation s = Z - 1 , and the capacity K(F) is the radius 
r = \/R of the corresponding circle in the w plane, with w— W~l. But, 
denoting OP' by d', we have from (19) 

1 4 
— = d' S 4K{F) = 4r = —, 
d R 

from which the Koebe result follows. That R/4 is the best result ob­
tainable follows from the consideration of a region in the z plane which 
is a narrow approximation to a straight segment. 

Again, of all the circles C contained in A and containing O, the 
radii have an upper bound /, and there is a circle of radius /, whose 
interior lies in A and such that 0 lies in the circle or on its circumfer­
ence. If this situation is interpreted in terms of the transformations 
3 = Z~~1, w= W~l we find a circle C', of radius /', circumscribed about 
F y but not necessarily the smallest one. 

The smallest circle C" which circumscribes 7? has a radius / " which 
is ^rj/S1/2, where rj is the diameter of F. But rj^4K(F), so that 
I" ^4r/31/2. The image of C " in the z plane is a circle C in A and con­
taining O in its interior. Let P , Q be opposite ends of a diameter of C 
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through 0. Then P',Qf are opposite ends of a diameter of C" through 
0, and 

1 1 / 1 1 \ 1 
/ è — (P0 + 0Q) = — ( + ) ^—> 

2 2 \ P'O OQ' / /" 
since the minimum value of (1/P'O) + (1/0Q') is obtained when 
P ' 0 = 0<2'. Accordingly 

31/2 31/2 

J e = iî. 
4r 4 

The value .43i£ is not, however, the best value which can be ob­
tained for the lower bound of l. By means of stricter inequalities on 
the coefficients of the Taylor series R. M. Robinson obtains the value 
%R. And if the requirement that 0 shall be contained in the circle is 
dropped, the radius of the largest circle which lies in A is at least as 
great as a number k, which as Landau shows [7] satisfies the inequal­
ity &^ .55JR , and as Robinson shows [8] satisfies also the inequality 
k^.66R. 

4. Open curves of minimum capacity. The statement (19) about 
the capacity of the projection of F may be reworded as follows: 

Of all continua which contain two fixed points A, B, the straight 
segment AB has the minimum capacity. 

This theorem involves a new orientation towards the question, for 
it suggests the discussion of the continuum of minimum capacity 
which contains a given arbitrary collection of fixed points, finite in 
number. Pólya has considered this problem [4] and obtained the solu­
tion of it in the case of In points spaced regularly, n on each of two 
concentric circumferences, the desired continuum consisting in this 
case of the radial lines drawn from the points to the center of the 
circle. 

The situation for n arbitrary points is discussed by Grötsch [9, b ] . 
The aspects of the problem which are involved are seen in the case 
of three points in the z plane. Consider a circumference of radius r 
in the w plane, and on it three points wi = r+0i, W2 = re(<t>1+<l>2)i

f 

Wz = re~(<t>1+<f>s)i with 0i, <£2, 4>s positive angles of sum 7r. A conformai 
transformation, with unit magnification at 00, of the exterior of the 
unit circle into the exterior of some continuum C in the z plane exists, 
in which pairs of symmetrical points on the arcs [O, #1], [0,— </>i], re­
spectively, adjacent to wi, go into single points of the Z plane; and 
similarly for the arcs adjacent to % and Wz. The three points re*h, 
re-**1, rei(*1+2*2) thus go into one point z', and the points wi, w2t w$ 
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correspond to certain distinct non-collinear points Zi, z^, z$. In fact, 
collinear points zi, JS2, z$ would arise only if one of the arcs 0i, 02, <t>z 
were zero, as is suggested by (18). The continuum C thus consists of 
three analytic rays from z' to Zi, z2> z$. 

I t is proved that C has the least capacity of any continuum which 
contains the three points Z\, Z<L, Zs regarded as fixed, by reducing the 
question to the consideration of the maximum sum of "modular 
ratios" for an area [9, a ] . This number is in fact equal to the upper 
bound of the Dirichlet integral of a function u summed over strips 
into which an area is subdivided, where at the ends of the strips u 
has the values 0 and 1 respectively, and along the sides of the strips 
du/dn = Q, and u satisfies Laplace's equation in each strip. It is then 
shown by examination of the parameters involved in the transforma­
tion, with reference to a principle of continuity in the variation of 
those parameters, that the above treatment is equivalent to that of 
the general case. The situation with n points is treated in the same 
manner, except that intermediate arcs, not abutting on any Wi, arise 
from the restrictive nature of the conformai transformation.3 

5. Open surfaces of minimum capacity. In three dimensions, the 
simplest problem analogous to those just treated would be to prove 
the existence of a surface sheet, bounded by a given closed curve in 
space, which among all such surfaces would have minimum capacity 
[ 10, a, b ] . This problem would be the counterpart of the simplest 
plane problem, namely, the continuum of minimum capacity con­
taining two given points. But it may be of interest for the record that 
the author put to himself and solved the space problem first, before 
becoming familiar with the problem in the plane, and the latter has 
been introduced in this address, with its fundamental relation to con-
formal representation, mostly as an extension of the space problem 
rather than the reverse. In fact, it will be seen later that the state­
ments of the two problems do not exactly correspond. 

We consider a simple closed space curve sf itself of zero capacity, 
in our three-dimensional euclidean space B and topologically equiva­
lent to a circle in the sense that there exists a one-one continuous 
transformation £ of a sufficiently large sphere containing s into itself, 
in such a way that 5 goes into a circle a interior to the sphere. For 
convenience, we suppose that the points of the surface of the sphere 
are unchanged by the transformation, and we may regard £ as ex­
tended outside the sphere as the identical transformation. 

3 The author apologizes for the skimpy treatment of Grotsch's important contribu­
tion. Lack of space requires him to refer the reader to the cited memoirs. 
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Let now 5 be a piece of surface consisting of a closed set of points 
which contains s and which, except in the neighborhood of s, consists 
of a finite number of regular surface elements, each surface element 
having bounded curvatures. Then, without specifying further for the 
moment the notion of s being the boundary of S> the analysis of §1 
applies, and at every point in a surface element, not on an edge of the 
element or on s, the conductor potential of S will satisfy the relation 
(8'). In order, however, not to have to distinguish between local posi­
tive and negative normal directions at points of S we shall consider 
normal directions m, ri2 as positively directed away from 5 and write 
(8;) and (8") in the form 

dV dV 
(20) = ; 

dn\ dft2 
dV dV 

(20 ' ) 1 = - 47TO-. 
dfii dft2 

The function V(M) has a constant value, say 1, on each surface 
element, and its derivatives are continuous as we approach an in­
terior point of such an element [9, a, p. 165]. If then we define vi(M) 
locally as equal to F on the side 1 of the surface element and as equal 
to 2 — V on the side 2 of that element, the function V\(M) and its first 
partial derivatives will be continuous across the element, on account 
of (20) ; and Vi(M) will be harmonic at points of the element. Conse­
quently the surface element itself will be a piece of analytic surface, 
being a level surface, without singularities, of a harmonic function. 
Similarly an extension of V from the side 2 to the side 1 yields a 
harmonic function %. 

I t may be shown that there exists a two-valued harmonic function 
v(M) which has the following properties: 

(a) Either branch of the function is harmonically extensible along 
any curve in space which does not meet s. 

(b) The function is bounded and one of its two values tends to 0 
at oo, the other to 2. 

(c) If the two values Vi(M), v2(M) of v are distinct, a closed path 
which starts from M and loops s once, returning to M, carries V\(M) 
into V2(M), and vice versa, whereas if the closed path does not loop s 
it carries each value back into itself. 

(1) At every point M not on s, Vi(M)+V2(M) = 2. 
(m) Every point of s is a limit point of the locus v(M) = 1. 
We obtain the function v(M) by applying the Schwarz alternating 

process (in a form which is equivalent to the sweeping out process, 
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without its distributions of mass) to a three-dimensional Riemann 
multiple space 9ft. In our case the curve s serves as a branch curve, 
analogous to a branch point in the complex plane, and the Riemann 
manifold may be constructed simply, by introducing the proper cut 
space. The necessary cut surface 2 may be drawn, for example, as 
the image in terms of the transformation f of a right circular cylindri­
cal surface with base <x (in the xy plane) and extending to oo (in the 
direction of the positive z axis). The function v(M) is to be single 
valued in each of the cut spaces. The double cut space may again be 
replaced by a finite number of simple overlapping spaces by replacing 
the cylindrical surface by truncated conical surfaces within and out­
side it, and by means of these overlapping regions the connections of 
the Riemann manifold may be made across the cut surface. 

At oo in the first sheet of 2JÏ within the half cylinder 2 , Vi is to be 
assigned the value 0 and outside it the value 2, whereas in the second 
sheet z>2 is to be assigned the value 2 at oo within the cylinder and the 
value 0 at oo outside it; and the Schwarz process is employed to draw 
the two functions vi, v2 together through the simple regions which 
overlap the cuts. There are however one or two difficulties, to expound 
the details of which would extend unduly the length of this paper. In 
the first place, the curve s is a curve of zero capacity and hence will 
not act as a carrier for boundary values, in spite of the fact that v(M) 
is to assume the value 1 on s; and in the second place, the surface 2 
and the pseudo-conical surfaces are merely the topological images of 
smooth surfaces and are therefore not necessarily free of sets of points 
which are irregular for the Dirichlet problem. 

The first of these difficulties is overcome by replacing a by a se­
quence of tori <Tn condensing to a as n~•> oo. For each of the correspond­
ing surfaces 2 n in B a Riemann manifold SDîn is left, when the interior 
of 2 n is cut out, and a function v(n)(M) is set up which has the given 
properties at oo and corresponds to the value 1 on the boundary 2 n . 
The second difficulty is handled by making use of the fact that the 
generalized Dirichlet problem is solvable for domains in which points 
are simply counted and by performing the analysis in terms of func­
tions which are superharmonic on the interior of the whole Riemann 
manifold. I t is proved that the successive alternate functions are 
superharmonic even at the exceptional points of the cross cuts 
which define the overlapping regions.4 

4 Incidentally it may be noted that the above process for solving the generalized 
Dirichlet problem for a domain on a multiple space of a finite number of leaves enables 
one to arrive at the Green's function for the domain, which has at a given point a 
singularity of the form 1/r on only one of the leaves. 
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The sequence {v(n)} has a limit function v(M) which is two-valued 
and of course harmonic in any simply counted bounded domain, so 
that it evidently satisfies (a). I t is easily shown to satisfy (b) on ac­
count of the uniformity of convergence except in the neighborhood 
of s, and (c) and (1) similarly, since each function v(n)(M) has those 
properties. Because of the non-uniform convergence in the neighbor­
hood of 5 the property (m) is established with a little more difficulty; 
it is proved by showing that in any neighborhood of a point of 5 there 
lies for each n at least one point P n , distant from 5 by more than a 
given positive ô, where z/(w)(Pn) = l. The function v(M) is not neces­
sarily continuous at s, for s has not been restricted as to smoothness, 
but all of its points are limit points of the surface 5 which is the locus 
v(M) = l. I t is clear that S occludes no points from oo, that is, en­
closes no portion of space; in fact if the contrary were true we should 
have fl(ikf) = l in that portion, and therefore throughout space. 

The facts just given about v(M) lead to a more geometrical inter­
pretation of the relation of s to 5. Any simple closed curve which 
loops s once (having no points in common with s) has points in com­
mon with S. If in the neighborhood of ,5 the curve is analytic, and 
cuts S at nonsingular points, it has an odd number of points in com­
mon with 5, counting multiple intersections in the usual way. 

We pass now to the converse statement. The two-valued harmonic 
function which satisfies the conditions (a), (b), (c) is unique. 

The proof of this theorem lies essentially in an extension of 
Kellogg's uniqueness theorem, which may be stated as follows: Let 
u(M) be harmonic and bounded on a domain 0 on a manifold 9ft, 
which consists of a finite number of sheets, tending to 0 at oo if 12 
is not a bounded domain, and let m be the upper bound of u(M), 
m>0. Let F be the set of points Q on the boundary of 12 where 
lim sup u(M)^m — e as M tends to Q on one or another leaf of 9ft. 
Then F considered as a set of points in ordinary space is of posi­
tive capacity. The details of the proof are not difficult, but must be 
omitted here on account of lack of space. 

As a consequence of this theorem, since 5 is of zero capacity, the 
difference of two functions which satisfy (a), (b), (c) will have to have 
its upper and lower bounds on 9ft both equal to zero. 

The surface 5, thus determined as the level surface v = l oi the 
function v, furnishes the minimum capacity among all surfaces S' 
which have the following properties: S' is bounded and every point 
of 5 is a limit point of S'; except in the neighborhood of s, S' consists 
of a finite number of regular elements sufficiently smooth for an ap­
plication of Green's theorem; every closed curve which loops s has a 
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point in common with S'. Thus S' is a cut surface for ffll. The proof 
depends upon a comparison of the energies of the conductor potential 
for S and of the conductor potential for S' for the same total mass, 
in terms of Green's theorem—a comparison which is made possible 
by evaluating the Dirichlet integral for the conductor potential of S 
first on 5DÎ and then on Sr. The proof has already been given in detail 
[Ml-

6. Open surfaces of a finite number of sheets. The nature of our 
problem will be more clearly brought out by considering a slightly 
more general case, for example, the image si, s2 in B of two non-
linked circles <ri, <T2. In this case the connections of the Riemann mani­
fold 9K are easily imagined, since the branches of the two-valued func­
tion v are to be interchanged by analytic extension along any circuit 
which links si or s2 once, and thus unchanged by a circuit which links 
them both. If we denote by ua\ u(2) the two functions z>(1) — 1, z/(2) — 1 
where v(1) and z>(2) are the two-valued harmonic functions belonging 
to Si, s2 separately, the product u{l)u{2) will be single valued on 3)?; 
and also the function u(M), defined by the equation 

v(M) - 1 = u™{M)u™{M)u(tf), 

will be single valued in ordinary space. By expressing the fact that 
the Laplacian of the left-hand member is zero, and utilizing the fact 
that l--u(M) vanishes canonically as M tends to <*>, and is repre­
sented by a potential, an integral equation may be found for the un­
known function u(M). 

But it may also be remarked that if the curves si, s2 are joined by a 
strip, arbitrarily narrow, so that 5 is made a simple space curve in 
the manner of §5, the capacity in the new situation becomes a limiting 
case of that of the old, since the capacity of the strip may be made 
arbitrarily small. In other words, the problem of finding a single con­
tinuum, or even a single surface, in three dimensions which contains 
both Si and s2 is illusory; for the capacity of a joining curve may be 
made zero. Hence our problem refers essentially to the determination 
of surfaces, finite in number, which will be cut by any circuit which 
loops a component part of s. In two dimensions there is, however, also 
a second problem analogous to our three-dimensional one. 

We close by discussing qualitatively some simple cases. If the curve 
s lies in a plane, the surface 5 is the plane surface enclosed. Neverthe­
less the surface S in general is evidently not a minimal surface. In 
fact, if 5 consists of two circles si, s2 which are parallel cross sections 
of a long circular cylinder, at a considerable distance from each other, 



732 G. C. EVANS [October 

the minimal surface would consist of the two parallel circular areas. 
On the other hand, it is evident that the equation (8) is not thus 
satisfied, so that the two flat discs do not constitute the arrangement 
for minimum capacity. 

In the case of the Plateau problem, if the two circles just described 
are brought closer together, the discs remain a solution until there is 
actual contact; on the other hand, if the circles are withdrawn while 
they are bridged by the constricted longitudinal surface (the catenary 
of revolution) which satisfies the condition of zero mean curvature, 
this surface maintains itself until a central node is reached by means 
of the constriction. With the present problem there is only one surface 
at any stage, the unstable situation being avoided, in the continuous 
deformation, by the bulges in the disc-shaped surfaces which are re­
quired to minimize the energy. These are caused by the action at a 
distance which is expressed in terms of (8). 

It is seen also by means of (8) that the surface S lies within the 
closed convex cover of 5. 

If the two circles of the previous paragraphs are connected along 
elements of the cylinder by means of a narrow strip, so that s becomes 
a simple curve, and the strip is twisted so that one of the circles is 
overturned, we have another figure which changes its character mark­
edly as the circles are brought together. In fact, the surface changes 
continuously from a two-sided one when the circles are far apart, into 
a nodal surface and then finally into what is evidently a one-sided 
one when the circles are sufficiently close so that the curve 5 can be 
the boundary of a narrow Möbius strip. 

The author must admit, in conclusion, that the methods described 
in this three-dimensional discussion are quite specialized, and it is 
hard to see how they can be used in a more general class of problems 
in the calculus of variations. Perhaps the introduction of a vector po­
tential would offer some advantage for the general point of view. 
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