ON A GENERALIZED GREEN’S FUNCTION AND
CERTAIN OF ITS APPLICATIONS!

STEFAN BERGMAN

1. Introduction. A theorem of Blaschke in the theory of a.f. 1 c.v.
(analytic functions of one complex variable) states: Z,Z,logl a,,l
> — 0, ,a,| <1, is a necessary and sufficient condition for the exist-
ence of a non-negative, harmonic function? H(z), & [6*—§ 21 {a,} ],
G2=E[| 2| <1], which possesses the property that [H(z)+log|z—a,| ],
v=1,2, - .,is regular in a neighborhood of z=a,. By

exp [ — H(z) — iB(3)] = f(2)

where B(z) is a function conjugate to H(2) we obtain a function f(2),
If(z)l =<1, 2&@?, which possesses factors (z—a,), v=1, 2, - - - .

If one wishes to obtain an analogous result in the theory of a.f. 2 c.v.
one must bear in mind at first the following fact:

If f(z)/g(2) is regular in G we call g(z) a zero function of f in &2

Since every function f regular in €2 can be represented in the form
f(2) =II(z—a,)k,(z) where k,(z) are regular and nonvanishing in @2,
we need to consider in the theory of a.f. 1 c.v. only linear zero func-
ttons. In the case of a.f. 2 c.v. we cannot in general represent even
polynomials as products of linear functions; therefore, one must use
for zero fumctions not only linear expressions but also arbitrary a.f.
2 cv. [1, p. 1189].3

Furthermore there is lacking in the theory of a.f. 2 c.v. a theorem
analogous to the theorem of Riemann, stating that every simply con-
nected domain possessing at least two boundary points can be trans-
formed conformally into €2 We cannot therefore limit ourselves to

1 Presented to the Society, April 27, 1940.

2 We designate by capital and small letters, respectively, real and complex functions
of 2k, 2=%r+1¥% and manifolds by English letters, where the upper index denotes
the dimension of the manifold. We omit this index for four-dimensional manifolds.
We denote by €[ - - - ] the et of points whose coordinates satisfy the relations indi-
cated in brackets. S means the logical sum. A horizontal bar above a letter indicates
the closure of the set denoted by the letter.

3 The numbers in brackets refer to the following papers: Stefan Bergman, 1. Pro-
ceedings, Akadem'e van Wetenschappen, Amsterdam, vol. 34 (1932), pp. 1188-1194,
2. Mathematische Annalen, vol. 102 (1934), pp. 324-348, 3. Compositio Mathematica,
vol. 3 (1936), pp. 136-173, 4. Compositio Mathematica, vol. 6 (1939), pp. 305-335,
5. Stefan Bergman and Marcinkiewicz, Fundamenta Mathematicae, vol. 33 (1939),
pp. 75-94, 6. G. Buler, Bulletin de I'Institute Mathématique de Tomsk, vol. 2 (1939),
pp. 164-186, 7. S. Saks, Theory of the Integral, Monografie Matematyczne, vol. 7,
Warsaw and Lwéw, 1937.
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consideration of one domain as in the theory of a.f. 1 c.v., but we
must study our problem for an arbitrary domain.

In attempting to generalize to the theory of a.f. 2 c.v. the methods
which are bases for the proofs of the theorem of Blaschke and other
theorems in the theory of meromorphic functions, until now we have
limited ourselves to the consideration of a special class of domains
(domains with distinguished boundary surface) [2, §1, §3; 3, p. 138];
furthermore it was necessary to introduce instead of harmonic func-
tions an “extended class of functions” which contains biharmonic
functions (that is, real or imaginary part of a.f. 2 c.v.). This class
possesses various properties analogous to those of harmonic functions,
but depends upon the domain [4, p. 306 and p. 319]. In the case of a
bicylinder €= 6[|zkl <y, k=1, 2], the double harmonic functions,
that is, functions H satisfying 92H/0x2+02H /dy2=0, k=1, 2, form
the extended class of functions.

2. Functions of the extended class. In the present paper we shall
consider a special class of domains, I, with distinguished boundary
surface. Let h(zz, N\), 0 SN=2m, h(2,, 0) =h(z2., 27), be a continuously
differentiable function of 2, N, which is for every constant N an ana-
lytic function of 2, |2| <1, such that:

a®. we have

(2.1)  min | k(z, \)| ZA >0, M1=|0h/ON| S M < oo

b°. itis possible to represent the curve b!(z;) =S osas2xE [21=1(Za, N),
Zy=12], Izzl =1, in polar coordinates p, w in the form p=p(w; 22)
where p is one-valued, and with the further assumption that

(2.2) | 0mp/de| < M, H =1, 2, M~ < | dw/ON| S M < o.

Let B2(2;) be the region in the plane Z; =2, bounded by 0'(z,). (See
Figure 1, p. 657.) Thus 532(Z2) =8 ogsgls 0<)\§2«,€ [21=Sh(Z2, )\), Zz =22].
The domain I is now defined as M =S |.,;<:B2(2:). The boundary of
M consists of two segments of analytic hypersurfaces

2.3 1 =S¥, FO = Ela = e V), =l < 1],
f2 = Sosss2.B [exp (igs)].

The intersection

=111 =8 024,22:8 [exP (12) ] =S 0525248 059,52:E [21="D(exp (igho),
\), ;m=exp (i¢s)] =8 omrsari'(N),

where 1}(\) =8 o54,52:C [21 =T(exp (i), ), 22 =exp (i) |, forms the
distinguished boundary surface of .
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Let a real function G(¢z, N), 0S¢ =< 2w, 0=\ =27, be given such
that, except for a finite number of values of A, G(¢2, N) is continuous
in ¢ and N for every A, in the range 0 <¢. =< 2w, except for a finite
number of values of ¢; (which can vary with A\) and such that*
S| G(¢2, )| dNdpy =c < 0.

The function D(z1, 22) =D(z1, 22; G; M) of “extended class E'(IN)”
is defined in I in the following way:

1°. In every point (2, 2:) of 32(\) we define the value of D in such
a manner that D [k(z, ), 22| becomes a harmonic function of x,, ¥, for
|22] <1, which assumes for | 2| =1 the values G(¢s, N);

2°, In every B2(z;) we define the values of D in such a manner that
D(z1, 22) becomes a harmonic function of x;, y: in B2(z.) which as-
sumes on b!(z;) the values D[h(z, N), 2:] defined by 1°. We get for D
the integral representation

(2.4) D(Zl, Zz; G; m) = ff G(d)z, )\)P1P2d¢2dx()\, Zz),

p=Lt 1—| v Z)|? ,
20 14| w(Zy, Z9) |2 — 2| w(Z1,Z5) | cos [x(\;Z2) — arc w(Z, Zs)]
P= 1= & ,
2 1 + Rg — 2R cos (@3 — ¢)
Roei®2 = Z,,

where w({, Zs), w(0, Zz) =0, w’'(0, Z,) >0, is the function which maps
B2(Z,) on the unit circle; x(\; Z:) =arc w[k(Zs, N), Z:] [4, p. 319].
H(z1, 2) is said to be HEEM) if H(z, 2)=lim,..D (21, 2)
—limy.. D@ (21, 2,) where DP (21, 22) =D(z1, 22; G®; M) is a set of
non-decreasing positive functions described above converging uni-
formly to a limit function in every closed subregion of I and almost

everywhere on every S 9g4,<2-01(r¢?%2), r <1. We have then by a classi-
cal theorem of Lebesgue [7, p. 28]

1
(2.5) HO,0) = f f H{[h(reiss, \), reio2]dgadx(n; 0).

The function L(21, 2,) is said to be LEI(IM) if L can be represented
in the form

(2.6) L(z1, 22) = g [— log | gu(21, 22) | + H.(31, 22)],

¢ Here and in the following [/ means [31_q/5z,.
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the sum converging uniformly in any closed subregion of [ —§ ;2.®?],
&2=E[g, (21, 2)=0] and converging almost everywhere on every
S 054,520 (re?92), r <1, and such that

(2.7 ffL[h(re“’z, N), reit2|dgedx(N; 0) = ¢, = — ¢ > — o, r < 1

(2.8) ff | L{k(rei®s, N), reit] | dpadx(N, 0) < oo, r<1.

g,(21, 22) are a.f. 2 c.v. regular in 9% and H,(z1, 22) € E(M).

In an analogous manner we introduce the classes E'(I,), E(IM,),
D), Me=S 11,1« Bzs) = E[| 22| <7, (21, 22) EB2) .

REMARK 1. Since E[z1=h(z, N), || <r]CI2N) [cf. (2.3)] every
function H(z1, 2;) which is of class E'(I) or E(IR)belongs to E'(IM,)
or E(M,) respectively.

3. Lemmas. For the proof of the main theorem we need several
lemmas.

1. There exists a function a,(Z1, Zs), 0n(Z1, Zs) < o for (Z1, Z2) EM,,
which depends only on MM, such that for every non-negative H(Z., Zs)
EE(IM,) we have

(3.1) H(Zy, Zs) £ o(Zy, Z2)H(0, 0).

Proor. According to (2.4) we have for every non-negative
D.(Z\, Z;) € E'(M.)

r+ Ry 14| w(Zi; Zy) |
r — Ry 1 —|w(Z1;Z2)|

(3.2) D(z.2) < [ [ 6tos Wasaixr zo.
Since b'(Z,) satisfies the conditions a® and b® for every Z,, we obtain
by Lemma 7 of [5]

3.3) Mid arc w[h(0, N), 0] £ d arc w[h(Zs, N), Z2] = dx(\, Z2)
) <

Myd arc w[k(0, N), 0] = Midx(>; 0),

M, being an appropriate constant. By Lemma 5 of [5], (3.2) and
(2.4) we obtain (3.1) with H replaced by D and with a.(Z1, Zs)
=(r+Ry)(r—Ry)[1+ l w(Z1, Zs) | 1[8(Z1, Z5)], 8(Z1, Z,) being an ap-
propriate constant. Since we can approximate H&E E(IM,) uniformly
in any closed subregion of 9%, by an appropriate D(Z;, Zs) = DY (Z1, Z,)
—D®(Zy, Zy), D¥(Zy, Z;) € E'(IM,), (3.1) is valid for H(Z1, Zs).

5 In the Lemma 5 of [5] ®(z) is assumed to vanish at z=0.
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(21, 225 g M) = — log | g(zy, 22) | + D(ay, 225 log | g| ; M),
g = g[h(reit, N), reit],

(3.4)

is designated Green's function of the extended class corresponding to g
and M., Mi=M. Here g is supposed to be regular in .

In every point (21, 2) EF2 =8 ox,<2.0'(rei%2) where g(z1, 2)7#0,
(21, 225 g; M) =0.

Since the set of points of §? where g(z1, 22) =0 has zero measure, we
have

3.9) ff T [R(rei¢z, N), reidz; g3 MM, |dpadx(n; 0) = 0.

In order to avoid tedious operations in our later considerations we

suppose in the following that g and g, have no factors of the form
[21—R(22, M) ], \ const.

I1. For (21, 25) EM+13,
(3.6) T'(z1, 225 g; M) = 0.

PROOF. Since in every 82(s)), Iz‘2’| <1, T' (21, 22; g; M) is a non-nega-
tive harmonic function of x;, 3, which may become infinite at
a finite number of points a like —p log lzl—-a|, p positive integer,
it is necessary to show only that I'(z, 2:; g; M) =0 for (z1, 2)Ef
=8 |2,1<101(22) =S 022 22.32(N). (The other possibility is that g has a
factor (z,—a), but then I'(zi,a; g; M) =+ ».) In every JF*(\) we have
5. (21, 325 g M) = T[h(za, V), 225 g5 M]

' = — log | g[h(zz, N), 22]| + D[h(z2, M), 22; log | g ; M].

T'[h(z2, N), 225 g; M] is for every N a harmonic function of xs, 2 in
| 22| <1 except at a finite number of points in which it becomes

and which assumes the boundary values 0 on |2| =1. The function
(3.7) is obviously non-negative in |22| <1.

II1. The following relation holds:
(3.8) lim T'(0, 0; g; M,) = T'(0, 0; g; M).
r—1

Proor. In order to prove (3.8) we shall show that

(3.9) lin} D(0, 0;log | g|, M) = D(0, 0;log | g| ; M).
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Since g(21, 22) is regular on F3 =S o=4,52.01(e?%2), F2 = §2, we can find by
Weierstrass’ preparation theorem and the Heine-Borel theorem a
finite number of domains i =E[| 25— W | <p,H=1,2], k=1, - - -, 1,
@, (Y eF?, with the following properties:
1°. S5_19x covers the total (four-dimensional) neighborhood of $3;
2°. in every 9,

[N

g = o= 01 TLlos — o () aCen 30

where pi, ur are non-negative integers, ¥; is an a.f. 2 c.v. regular and

nonvanishing in ©x and o{?(22), o (¢) =¥ are algebroid® in a cer-

tain neighborhood of 2, = ¢,
We can suppose that 7, is chosen so near to 1 that g has no factors
(ze—reit?), ro<r<1. Hence in order to prove (3.9) it is sufficient to

prove that

(3.10) ff 10g l 21 — al(lk)(@) l d(ﬁzdx()\; 0), 29 = rew’,

is a continuous function of 7 for every k and H, the integration being
taken over {2 9r=8 sPss,ss@8l(rei%2), gl(re®?) =E [z, =h(reite, \),
Z=rei*2, \y(7, o) SNSNa(7, o) ]

Let 6>0, >0 and R2=E[|2—{®| <35, z,=reis2]. We can deter-
mine an 7y so near to 1 that for 7»o<7=<1 and ¢ —e< ¢ <y +¢€ where
Y=arc {¥, aiP(rei*2) lies” in &2 and the point o (rei¢2) is not con-
tained in g!(rei*?) for 7o <r=<1, ¢\’ <o <Y —ec or Y+ e <<%

We dissect every gl(rei®?), ro=r=1, y—e<ds=¢y+e into two
parts; gi(rei®?) = K% gl(rei¢?) =E[z1=h(z, N), za=rei®2, NV(5, ) =\
SN (3, ¢) | and Fi(reive) = gl(reis?) — gy(reits).

(3.10) Taken over SyPs¢,sy—e8'(7€%%), Sytess=sPg'(rei®?) or
S y—e<g,syre E(rei®2) is obviously a continuous function of 7, since
¥ (rei%2) does not lie on these surfaces. By (2.1) and (2.2) there exists
by Lemmas 3 and 4 of [5] a P=P(M, A) such that every circle of
radius P, tangent to bl(rei¢?) at an arbitrary point h(rei¢2, \) of
bl(rei¢?) lies either entirely inside of B2(rei¢2) or outside of this do-
main.

6 A function a=a(3) satisfying the equation om+gi(z)a™ 14 - -« +g.(3) =0,
where g,(2), p=1,2,- -+, m, are a.f. of 1 c.v. regular in the domain U2 is said to be
“algebroid in U2.”

7 Here and in the following part of this section we write for the sake of shortness
h(re™:, \) instead of [h(re®:, N), re®2] and o (rei®2) instead of [alF (re®2), reide].
(The points are supposed to be points of the space (21, 22), lying in the plane zy=re®%:,
but we omit the coordinate 2,.)
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If therefore minxl o (reit2) —h(reit2, )| <Pand if h(reis2,\%) is the
point of b!(rei¢?) which is nearest to o (rei¢?), then oiP(rei¢?) lies
on the normal n'(rei#?) to bl(reis?) at h(rei¢2, \%) which lies in the
plane {>=2,.

It follows by (2.1) and (2.2) that h(rei¢z,\) lies, for [N —\°| <P/
inside of the triangle T2, the sides of which are formed by arcs of the

k(reiss, \) p

zZ
m'(re'#2)
(k) i
ay'(reiés et A0
P’ .
W g'(re®:)
P
B*(rei*2)
pu b (reis)
O ——>

exterior and of the interior circles of radius P, tangent to bl(rei¢?) at
h(rei®2, % and of the circle |2, —h(rei¢2, \0)| =21/2P,

The straight line passing through h(rei¢2, \) and k(re?®2, N\°) forms
with n'(re*#?) an angle B, for which 45° < |B| <135°.

Since by (2.1) and (2.2) the length of [h(rei¢2,N), h(rei¢2,\%)] is not
less than

| peie — poeio| = 3A| @ — wo| = $AM-1- [N — ],
peie = h(rei®r, N), poeiet = h(rei¢2, \Y), [sin (0 — ) ]/w — wo > 1,

the distance between k(rei¢2, \) and n'(re?¢2) and therefore between
h(reit2, \) and of¥ (rei¢?) [en!(rei¢?)] is not less than

HN=N|AM1sin 45° = ()2 A=\ |AM L
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If ])\—)\"I >PM~1, then we have the two following possibilities:
1°. h(rei®2, \) lies in the triangle $2 and we have by (2.2)

lo—w| = PM—2,

and from this Ih(rei‘”, N) —af(reits)| = (3)¥2APM-?, since h(rei®?,
NEeT

2°. h(rei¢2, \) lies outside of T2 and then, since o (rei%2) lies be-
tween h(rei¢2, \%) and the center of the circle, we have

| (reit2, N) —aff (reie)| = P.
Since we can suppose that M =1 and P =1 we have finally that

(B.11) | he™, N — ag (e | = @) APM | A = A |am
where |N=N| y-1is |[N=N0| if |N=N| £ M1, and is M~'if [A—N]
=M1

Thus the integral (3.10) taken over S y—c=g,<y+ 8¢ (rei¢?) is smaller
in absolute value than

yt+e oA (5,42)
M f | Tog ((3)32APM—1 | X — N0 |a1) | dNdohs
V— AD 3, 09)

which converges to 0 as §—0.

4. The main theorem. Let {g,(z, 22)} designate a set of a.f. 2 c.v.
regular in M and possessing the property: A. For every r <1 there exists
an N(r) so that g,(21, 22), v > N(7), does not vanish in MW =S ., = B(22).
Then

(4.1) 22 T(0,0; g; M) < o
p==1

15 a necessary and sufficient condiiion for the existence of a function
F(z1, 25) €1(M), F(0,0) < o, which possesses the property that for every v
F(z, 25) +log| g,(21, Zz)l s regular on &2 except at the interseciion points
®2 -2, n#y.

Proor. (4.1) is necessary. The function F becomes infinite like
—loglg,,(zl, 22)| on &, v=1,2, - .. Since by A, & for »>N(7) lies
outside of M, and therefore a fortiori outside of IM,, p=v,
F(z, 25)—Y YOT(z,, 25; g,; M,) has no singularities in 9N,. Since
—logl g.(21, 22)] for ¥> N(r) are regular biharmonic functions in 9,
we have by Remark 1 that [—log| g, (21, 22)| +H, (21, 2:) | EE(I,) for
»> N(r) and therefore that '
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ff _i [— log | & | + H,]dp2dx(n; 0)

(4.2) Nm+ o
=— 3. [~log [£(0,0)]+ H,0,0)].
4r? Ny 11
Since
N(r)
F(Z], 22) - Z P(Zl, 225 8 Wep)
(4.3) i

m

=1lim Y, [—log | g, 2) |+ Hi(o, 22)] + P31, 22)

M—R  y_N (r)+1

is absolutely integrable, where

N(@r)
P(z1, z) = 2, [H.(21, 22) — D(21, 223 g, My) ]

r=1

[cf. (2.6), (2.8), and (3.4)], it follows by (4.2), (4.3) and the Lebes-
gue theorem [7, p. 29] that®

[ [ g0 = [ [ [F—N(Z” I‘vp:ldmdx()\;O)

v=1

= f f [ Mgrjm(— log | g |+ H,) + P] dé2dx(N; 0)
1

(4.4) N
- = [-e [80,0] + 10,01 + 70,0}
4r: \ ven (41
1 N
= ZW;[F(O, 0) — E (0, 0; g,; EUB,,)].

By (2.7), (3.6) the right-hand member is = —Cr and therefore for
=< N(r) we have by 11

t
(4.5) > T(0, 0; g; M,) < 4x2Cr + F(0, 0).
r=1

By Lemma III we can replace in (4.5) I, by M and since this in-
equality is true for every ¢, (4.1) holds.

In order to prove that (4.1) is sufficient we shall show that
221Dz, 205 g3 M) EUM). For r <1, N(r) <m < o,

8 The arguments of g,, H,, P, T,, lacking in (4.2) and (4.4) are assumed to be
[2(oei2,N), peits].

Typin (4.4) is I‘[h(Pei%y ), peiz; gv39ﬁp]-
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m

> D(z, 2; g MEE(M,).

v=N(r)+1

By II and I we have

(4.6) D T(21,258; M S arlzr,z2) 2, T(0,0;8,;M).

y=N (r)+1 y=N (r)+1

Therefore by II and (4.1), D2 yoy+1L' (21, %2; g; M) converges uni-
formly in any closed subregion of .
Since

f f { > Tlhes X),fei”;gy;ﬁm]}dmdx()\; 0)

y=N (r)+1

(4.7) Do
=— 3 T(0,0;g;M),

4x? v=N(r)+1

by II and the known theorem of Lebesgue [7, p. 28]

0

> Tz, 2;8;M

yv=N@)+1

exists almost everywhere on {2, 7 <1, and we have

ff { N}: IF[h(re"”, N, re"“;gv;iml}dwx(k 0)
(4. 8) v=N (r)+

1 0
=— 2 T(0,0; g,; M).
472 v=N (r)+1
Therefore by (4.1) F(z1, 23) =2 Tz, 2; g; M) exists in
M =lim, ., M. It follows by II that F(z;, 2) 20, (21, 22) EM+13, and
by (4.8) and (4.1) we have that

4.9 f f {F[h(reits, N), reis2]}dpadx(N; 0) 2 0, r< 1.

REMARK. Since double harmonic functions are the extended class
for any bicylinder, an analogous procedure shows that in the case of a
bicylinder 8[| zk| <1, k=1, 2] A (see p. 658) can be replaced by the
(weaker) hypothesis that g,(z1, 2), »=N(r), do not vanish in
E[|2| <7, k=1, 2]. Furthermore we wish to notice that from re-
sults of Buler [6] one can obtain in this case certain properties of
lines E[F(z, 2)=0, |z| =4]|z|* 4, >0, |z| <1] if Fis bihar-
monic in [E—§,2,®?%].
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Finally we wish to indicate that a procedure analogous to those of
[4] enables us to associate with every function f, meromorphic in M,
a characteristic function T(, f), r<1. Using the results of [5] and
those of a work of Bers® as well as the theorem of this paper it is pos-
sible to show that, under certain hypotheses, l f | possesses boundary
values almost everywhere on §?2, if the T(r, f) is uniformly bounded
as r—1.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

® The paper of Bers will appear in American Journal of Mathematics. A prelimi-
nary report of his work may be found in Comptes Rendus de I'’Académie des Sciences,
Paris, vol. 208 (1939), pp. 1273-1275 and 1475-1477.

MONOTONIC COLLECTIONS OF PERIPHERALLY
SEPARABLE CONNECTED DOMAINS!

F. B. JONES

In my vain attempts to construct an example of a Moore space
which is normal but not metric,? I have discovered a few simple and
useful theorems about metric spaces which sound familiar but sur-
prisingly do not seem to be known or in the literature. The following
is such a theorem and deals with certain conditions under which a
monotonic collection of domains contains a countable monotonic sub-
collection running upward through it. Application of the theorem to
certain well ordered sequences is immediate.

Definitions.? A collection G of point sets is said to be monotonic
provided that if g; and gs'are elements of G then either g; contains g,
or g; contains gi. A subcollection H of a collection G of point sets is
said to run upward through G provided that if g is an element of G
there exists an element of H which contains g.

DEFINITION. A point set is said to be peripherally separable provided
that its boundary is separable.

Let S denote a locally connected metric space.

! Presented to the Society, February 22, 1941.

2 See F. B. Jones, Concerning normal and completely normal spaces, this Bulletin,
vol. 43 (1937), pp. 671-6717.

3 For the definition of certain terms and phrases, the reader is referred to R. L.
Moore’s Foundation of Point Set Theory, American Mathematical Society Colloquium
Publications, vol. 13, New York, 1932, or to W. Sierpifiski’s Introduction to General
Topology, Toronto, 1934, translated by C. C. Krieger.



