
THE FINITE DIFFERENCES OF POLYGENIC FUNCTIONS1 

RUFUS P. ISAACS 

By a polygenic function ƒ(z) we shall mean a function analytic in x 
and y separately, but whose real and imaginary parts are not required 
to satisfy the Cauchy-Riemann equations. At any point z the deriva­
tive of such a function will depend on 0, the angle at which the incre­
mented point (used in defining the derivative) approaches z. The set 
of these numbers, for a fixed z} but for different 0, form a circle. The 
equation for the derivative was given by Riemann in his classic dis­
sertation (1851), but Kasner was the first to point out that it was a 
circle and make a detailed study of its geometry.2 Hedrick called it 
the Kasner circle. 

In this paper we shall be concerned with the finite difference quo­
tients of polygenic functions. We shall show how a surface can be 
constructed for each point z representing the difference quotient, and 
the derivative circle is a cross section of this surface. 

The conjugate form. Regard 

z = x + iy, z = x — iy 

as a linear substitution, and perform its inverse 

1 
X = — (Z + *), 

2 

1 
y = — (z 

2i 
2) 

on f(z). The resulting F(z, z) will be called the conjugate form of/. 
Let DZF and DZF be the partial derivatives3 of F(z, z), regarding z 
and z as independent variables. That is, 

df dx df dy 

ox dz dy dz 
(1) 

DiF = l(D. + Dy)f. 
The operator E". Let w = pew. We define 

£•ƒ(*) = ƒ(* + «). 

1 Presented to the Society, February 25, 1939, under the title A geometric inter­
pretation of the difference quotient of polygenic functions. 

2 General theory of polygenic or non-monogenic functions ; The derivative congruence 
of circles, Proceedings of the National Academy of Sciences, vol. 13 (1928), pp. 75-82. 
A new theory of polygenic functions, Science, vol. 66 (1927). Also, The Geometry of 
Polygenic Functions, Kasner and DeCicco—a book in the course of preparation. 

3 In Kasner's notation, these are Wlif) and $(ƒ). 
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More precisely, this means 

Eœf(x, y) = f{x + p cos 0, y + p sin 0). 

E may also have a "partial" meaning: 

E°xf(xf y) = f(x + a, y). 

And we see the equivalence of the two operators: 

(2) E" = ÉT'• £'**'. 

Taylor's expansion may be written in the form 

(3) E V ( * > y) = M + aDx + — aü\ + • • • J ƒ(*, y) = exp (aDx)f. 

Now, by combining (2) and (3) we obtain the operational equiva­
lence 

Ew = exp (p cos 0 £>* + p sin 0 Z)^). 

(cos 6 Dx-\-sin 6 Dy) ƒ is nothing more than the directional derivative 
of/, which we designate by Of. Substituting from (1) for Dx and Dv, 
we see that 

(4) O = ei9D, + e~i9D-zy 

(5) £w = exp (pD). 

The differential quotient. We define 

ƒ(« + a») - /(g) 
o>A/(z) = ; 

whence, operationally, 

1 r 
WA = — [ £ - - 1] . 

CO 

Expanding by means of (4) and (5) 

1 f p2D2 1 

(6) = I D, + e Dt + -~(e Dt + 2e DZD, 

- 3 i 0 2X , 

+ e Dl) + ]ƒ(*)• 
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To obtain the derivative we let p—>0. The resulting expression 

[Dz + e-™Dz]f(z), 

which Kasner calls y, is immediately seen to be the points of a circle, 
when z is fixed and 0 varies. 

For a geometric interpretation of (6), let us add a third coordinate p 
to the x, y plane. In this 3-space, (6) represents a surface for each fixed 
value of z. Such a surface we will call a Kasnercoid or K-coid of the 
function. 

Example. f(z) =x2+y2+i(x+y). Its conjugate form is zz + %(i+l)z 
+ %(i — l)z. Using (6) we obtain for the difference quotient: 

WA/ = z + \{i + 1) + er™[z + J( i - 1)] + pe~ie. 

The K-coid of a typical point is sketched in Figure 1. 
This of course is a very simple case. In regard to the nature of 

K-coids in general, we state a theorem. 
A curve will be called a doubler of a circle when it has the following 

properties : 
1. In traversing the doubler once, we pass around the center of the 

circle twice. 
2. No circle intersects the doubler in more than six points. 
3. Every point on the circle is the midpoint of two points on the 

doubler. 
(See Figure 2.) 
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THEOREM. If p2 be neglected, then sections of the K~coid sufficiently 
near the derivative circle are doubters of the derivative circle. 

Compare with the monogenic case: 

For a monogenic function, the derivative circle reduces to a point and 
the nearby sections are nearly circles. 

The purpose of this paper is to throw some light on the nature of 
derivatives. We may consider the K-coid compressed along the p-axis 

FIG. 2 

so as to be a two-sheeted (at least for small p) Riemann surface with 
the derivative circle acting as "branch circle." Let us consider the 
familiar expression : 

f(z + co) - ƒ(*) 
lim ; 

and suppose z+co, in approaching z, travels along some curve. To 
each point on the curve correspond two points on the K-coid which 
approach a common point on the derivative circle. 

Connection with the second derivative. Let us write (6) in the form 

[e~idV + (ü>/2^e-2id<D2 + • • • ]f(z). 

Is the coefficient of co/2 ! the second derivative of ƒ (z) ? This depends 
on what is meant by the second derivative, as there are several alter­
native methods of defining it.4 According to Kasner's method,5 the 
second derivative depends not only on the slope of the path of the 
incremented point but also on the curvature of the path. The ex­
pression is 

[e-2i9V2 _ 2ie-ueKDé]f(z), 

where K is the curvature. 

4 See my unpublished Master's Essay, Columbia University. 
6 The second derivative of a polygenic function, Transactions of this Society, vol. 30, 

no. 4. 
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The corresponding expression for what I call the type A deriva­
tive—based on another, but equally logical definition—is merely the 
first term of the above expression. 

COLUMBIA UNIVERSITY 

ON THE ASYMPTOTIC LINES OF A RULED SURFACE 

GUIDO FUBINI 

Many mathematicians have studied the surfaces every asymptotic 
curve of which belongs to a linear complex. I will here be content with 
the results given on pages 112-116 and 266-288 of a treatise1 written 
by myself and Professor A. Cech. This treatise gives (p. 113) a very 
simple proof of the following theorem: 

If every non-rectilinear asymptotic curve of a ruled surface S belongs 
to a linear complex, all these asymptotic curves are projective to each other. 

We will find all the ruled surfaces, the non-rectilinear asymptotic 
curves of which are projective to each other, and prove conversely that 
every one of these asymptotic curves belongs to a linear complex. If c} c' 
are two of these asymptotic curves and if A is an arbitrary point of c, 
we can find on c' a point A' such that the straight line ^4^4' is a 
straight generatrix of S. The projectivity, which, according to our 
hypothesis, transforms c into c', will carry A into a point Ai of c'. 
We will prove that the two points A' and Ax are identical', but this 
theorem is not obvious and therefore our demonstration cannot be 
very simple. The generalization to nonruled surfaces seems to be 
rather complicated : and we do not occupy ourselves here with such a 
generalization. 

If the point x=x(u, v) generates a ruled surface S, for which 
u = const, and v = const, are asymptotic curves, we can suppose (loc. 
cit., p. 182) 

(1) x — y + uz 

in which y and z are functions of v. More clearly, if x\, x2, x3, x4 are 
homogeneous projective coordinates of a point of S, we can find eight 
functions yi and z{ of v such that 

(Ibis) oei = yi(v) + uzi{v), i = 1, 2, 3, 4. 

From the general theory of surfaces, it is known (loc. cit., p. 90) that 

1 Geometria Proiettiva Differenziale, Bologna, Zanichelli. 


