ON BIORTHOGONAL MATRICES!

Y. K. WONG

Introduction. Consider the basis consisting of a number system U
of type D, two general ranges B!, B2, and two positive hermitian
matrices €', 2. We introduce two binary relations for pairs of non-
modular matrices. The matrices k'2, ¢2?! are said to be contraceding
as to €'€, € in case «'?, ¢*! are by columns of M (e!), M(e2) respec-
tively and such that J2k!2u? = J2¢*12u2for every u?in the set M(&€Me2).
It is evident that when «'2 is of type M (e!)Mi(e?), then the contra-
cedence property implies that J2k!%p2!=¢. but not conversely. The
main results are stated in Theorems 2 and 3. We next consider ¢, €
both idempotent as to €'. Suppose that «!2 is by columns of 9(¢;) and
¢?! is by rows-conjugate of M(e}). Take any pair of vectors u!, v!
modular as to ¢, € respectively such that Jik*?ul, J'¢?p! are in
M(e?). If J'alylis equal to the inner product J2(J'glk!2, Ji¢2!p!), then
k2, ¢2! are said to be biorthogonal as to elee;e2. When € =¢, then
k1%, ¢2! are said to be biorthogonal as to e'ge? in case they are bior-
thogonal as to eleege?. With proper restrictions imposed upon «!2, 2!,
we obtain the contracedence property. In a later paper, we shall es-
tablish the relations of biorthogonality and a certain mode of inter-
change of integration processes.

1. Preliminary results. Consider the basis %, P!, B2, €', and «!?
which is by columns of MM (e!). E. H. Moore’s generalized Fourier proc-
esses give €=J*2k!2 and €,=J2k12k**1, The spaces M(e,) and
M(&) are in one-to-one correspondence (denoted by <) via the
transformations J'k*?! and J2«'2, and the correspondences are or-
thogonal in the sense that the moduli of the corresponding vectors
are preserved.?

(A)3 Suppose that N (el) =M1 (&) and Ma(eh) <>M2(€8) via the trans-
formations Jix*21, J2%¢!2, Then M;(el) is a subset of Me(e;) if and only
if Mi(&) is a subset of My(€) ; Mu(el) is linearly J'-closed if and only
if Mi() is linearly J2-closed; and Mi(el) is everywhere dense in
M2 (e)) if and only if My (€?) is everywhere dense in Ma(€X).

! Presented to the Society, June 20, 1940.

2 For a concise outline of Moore's generalized Fourier theory and its related topics,
see Moore, General Analysis, 1, pp. 19-26. For an important classical instance, see
E. Schmidt, Uber die Auflosung linearer Gleichungen mit unendlichvielen Unbekannten,
Rendiconti del Circolo Matematico di Palermo, vol. 25 (1908), pp. 56-77.

3 For the demonstrations of the following results, see the author’s forthcoming
paper On non-modular matrices.
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Let €2 be a positive hermitian matrix. (B) The class of all vectors u!
modular as to €' such that J'«*?!u! is in M (e?) will be denoted by
M(etx*e?). The intersection of M(e?) and M(e2) will be denoted by
M(e2Ne2). (C) The set M(e2N ) is identical with the class of vectors
Jik*2ut for all u! in M(ek*e?). Moreover, (D) the sets M (eix*e?) and
M(e2MN\e) are in one-to-one (orthogonal) correspondence via the
transformations Jik*2! and J2%k'2. (E) The set M(e'k*€?) is the linear
extension of the sum of M(ek*e?) and the orthogonal complement
within M(e!) of M(e). (F) The class M(elxk*e?) is everywhere dense
in M(e!) if and only if M(e2M€) is everywhere dense in IM(&).

2. Contraceding pairs of matrices. The basis of the paper consists
of a number system ¥ of type D, two general ranges B, P2, and two
positive hermitian matrices €', €2.

LeMMA 1. Suppose that k'2 is by columns of M(e'). Let Mo(€') be a
subset of P(e'); then M(elk*e?) is contained in (contains) Mo(e) only
if M(e2M\é) is contained in (contains) the class of vectors J'k*2'u? for all
utin Mo(et). The converses are valid provided that Mo(e') CIM(eL).

Proor. The lemma follows from (D) and (A) in §1.
If ¢2! is by columns of M (e?), we introduce the notations due to
E. H. Moore:

51; = ]2¢*12¢21, ei = ]l¢¢21¢*12'

LEMMA 2. Suppose that k2, 2! are by columns of M(e'), M(e?) re-
spectively. Then M(ek*e?) is contained in (contains) M(eM\ey) if and
only if M(ENe?) is contained in (contains) the class of vectors Jk*2'ul
for all ! in M(ekNey):

Proor. This lemma is a special instance of Lemma 1.

DEFINITION 1. The matrices k2, ¢p?* are said to be contraceding as to
e'€e? in case k12, @2 are by columns of M(e'), M(e2) respectively and
such that J***2u? = J2¢*12u? for every u? in the set M(EMe?).

THEOREM 1. Suppose that k2, 2! are contraceding as to €'€€?. Then

(1) M(er*e?) = [T2*12u?| p? in M(eN &) ] TM(€Ne);

(2) M(eeNe) CM(epe) ;

(3) M(e'k*e?) CM(e'N\ey) if and only if every p! for which J'ey! = 0!
is in M(e;).

ProoF. Part (1) is a consequence of the fact that

1% 2 2¢ 12 2

Mk €) = [Tk [u2 in 9:7&(62(\ ef)].
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By hypothesis, we may replace J2«'? by J?¢*!2, Since ¢*1? is modular
as to ;€2 and M(elx*e?) is a subset of M(e,), every vector of the form
J2%p*12u2 must belong to M(e;M\e,). This proves (1). Part (2) is obvious
from (1). Part (3) follows from (1) and (E).

THEOREM 2. Suppose that p2', k'* are contraceding as to e*eye®. Then

(1) O'M(eL) CM(e}) if and only if k2 is complete by columns of
M(e');

(2) the following four assertions are equivalent: (i) M(e'k*e2) CM(e});
(ii) &' 45 complete by columns of M(e') and M(e2Me) CM(e2p*e);
(iii) k'2is complete by columns of M(e') and ‘2, d2* are contraceding as
to e'ée?; (iv) M(eln*e?) C [T29*12u2| p2 in M(e2Ne) .

If one of the four conditions in (2) is valid, then M (e'k*e?) = M(e'Mey)
and M(e2Né€) =M(Ep*el).

Proor. If «'%is complete by columns of M (e!), then O'IM(e) = [01],
which is, of course,contained in M(e;). Conversely,everyu! satisfying
J'a'k2=0? is in the orthogonal complement within 9 (e') of M(el),
and hence is in M(¢;). Thus J¥p2'u! =02, Since ¢2! is complete by
rows-conjugate of M(e;), we have ul =01, proving that «!?is complete
by columns of M (el).

To prove (i) implies (ii), we observe by (E) that M (e'«k*e?) is the
linear extension of the sum of M(eix*e?) and O'M(eh). If (i) is valid,
then by part (1) just proved, k!? is complete by columns of M (e!).
By Lemma 2, the condition that M(ex*e?) CM(e;) is equivalent to

(a) 9]2(62 a ef) C [Jlx*21p1l p,l in Em(el N ei«,) l.
By hypothesis, we may replace J'k*2! by J*¥¢?!, Since, by (D),
(b) [76 W | 4" in M N ep)] = Mehs™e),

we have (i)—(ii). To prove (ii)—(iii), consider any vector u? in
M(e2Né). If (ii) is valid, then, by (D) (cf. (b) above), there exists a
vector u!in M(e!Me}) such that

(©) Wt = g
whence
2 12 2 2 %12 _1¢ 21 1 1¢ 1 1 1
To u =T¢ T'ou=Jcu=pn.
Now by hypothesis and (c), we have u?= J'x*?1ul, As € = ¢!, it follows
that

2¢ 12 2 2¢ 12 1 %21 1

111 1
Jxpu=J«xJrx p=Jeu =u

’
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proving the condition (iii). By Theorem 1, we have (iii)—(iv). Since
¢*12 is modular as to €2, we secure (iv)—(i).
The final statement follows by Theorem 1.

THEOREM 3. The matrices $*1, k'* are contraceding as to e?eye', ¢ is
complete by columns of M(e?), and M(e'x*e2) CM(e;) if and only if k2,
2 are contraceding as to e'€e?, k2 is complete by columns of M(e),

and M(e2p*el) CM(E).
Proor. Apply Theorems 1 and 2.

3. Biorthogonal matrices. By considering M(elx*e2) and M(EM e2)
as subsets of M(e!) and M(€) respectively, we have established the
one-to-one correspondence between those two subsets. The corre-
spondences are orthogonal. But the Fourier coefficient function of
every vector in I (elk*e?) is also modular as to e2. This property
gives rise to another direction of studying the correspondences be-
tween the aforementioned subsets.

DEFINITION 2. Suppose that €, € are idempotent* as to €', k'% is by
columns of M(e3), and ¢2' is by rows-conjugate of M(e)). Then k2,
2! are said to be biorthogonal as to €'eye € in case

Jlﬁlvl — ]2(]1,11'(12, J1¢21V1)
for every pair of vectors u?, v* in M(epr*e?), M(eipe?) respectively.
It is obvious that k!?, ¢2! are biorthogonal as to elejere? if and
only if ¢*!2, k*21 are biorthogonal as to €’e}€yer.

DEFINITION 3. Suppose that € is idempotent as to €' and k'%, ¢p*'2 are
by columns of M(e)). Then k2, ¢2* are said to be biorthogonal as to
elepe? if they are biorthogonal as to e eyepe?.

THEOREM 4. Suppose that €, € are idempotent as to €', and k'?,
d*12 are by columns of M(e}), M(e€}) respectively. Then

(i) «'2, @2 are biorthogonal as to e'€-€ e? if k2, 2! are biorthogonal as
to e'eyere?, and only if k'2, ¢*! are biorthogonal as to €'€.eyne?;

(ii) «'2, ¢p2! are biorthogonal as to e'e-€ie? if and only if

(4. 1) ]2(J1ﬁ1¢*12, /"2) = J2x(]1ljlxl2, :U'2)

holds for every u' in MM(eipe?) and every u? in M(e2Ne).
(iii) «'2, 2! are biorthogonal as to €'ereqne® if and only if

‘ e:, is idempotent as to € in case elo is by columns of IM(e!) and J‘e;. &= ¢. See
G.A, 1, pp. 23-24.
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(4.2) J%Em? = J1(J2%* B2, Joxlip?)
holds for every £ in M(e2Mel) and every n® in M(e2N ).

Proor. Since M(el) and M(ezs) are subsets of M(ey) and M(el)
respectively, we have the conclusion (i).

To prove the necessity in (ii), consider any u? in the set M(e2Ne2)
and any vector u! in M (ejpe?). Theorem (D) shows the existence of a
vector »2 in M(e-k*e?) such that

(a) 1/1 - ]2"’(12/"'27 'u2 — JIK*ZIVI.
By using the fact that x'? is modular as to €'€, we have
(b) ]2K(]1ﬁl,€12' “2) - Jlﬁlyl.

Equations (a) and (b) show that the condition is necessary. The
sufficiency can be proved similarly.

Now observe that k!%, ¢! are biorthogonal as to e'e.epe? if and
only if

(C) J?(Jll-lld)*w’ n2) = ]l(ﬁl, J?KK12172)

for every u' in M(ej-pe?) and every 12 in M(e2N\e). The latter con-
dition is obviously satisfied if and only if (4.2) holds, since M (e pe?)
and M(e3MNe?) are in one-to-one correspondence via the transfor-
mations J'¢2! and J%'¢*12 by (D).

THEOREM 5. Suppose that €, €, k'2, ¢! have the same properties as in
the hypothesis of Theorem 4, and MM (L) contains either M(e}) or M(€p).
Then k'2, ¢p2! are biorthogonal as to €'yeie? if and only if k'2, ¢p2! are
biorthogonal as to e*eie €.

ProoF. The condition is necessary by Theorem 4. If 9t(e!) contains
M(ed), the condition is obviously sufficient. If P (e!) contains M(el),
the sufficiency is proved by the following argument: Let u!, »* be
vectors in M(ejpe?), M(eik*e?) respectively. Since u! is modular as
to €. by hypothesis, we have

]1'&_1”1 _ Jl(]lﬁle:’ Vl) _ fl(ﬁl, J,leiyl).
Also

1 %211 1.1 %2111 1, %21 111

Jk v =TTk e =J(k ,Jev).
The vector J'elv! is evidently in the set I (elx*e?).

COROLLARY 6. Suppose that k'2, p*'2 are by columns of M (€*), M(e)
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respectively. Then k'2, ¢2' are biorthogonal as to € eee? if and only if
k12, 2! are biorthogonal as to €'e,e.

THEOREM 7. Suppose that e, €, k'2, 2! have the same properties as
in the hypothesis of Theorem 4, and M(EMe?) is everywhere dense in
M(E). Then «'2, ¢2' are biorthogonal as to e'eyeie and the orthogonal
complement within M(e;) of M(eg+) is a subset of M(ey) if and only if k12,
@' are biorthogonal as to €' eyezre? and ' is complete by rows-conjugate

of M(e).

Proor. The condition is obviously sufficient. For the necessity, we
need to show only that ¢?' is complete by rows-conjugate of MM (e;).
Consider any §! modular as to € such that Jh¢2g = Jigp2lEl =02,
Then £! belongs to M (ejpe?). Hence

]lﬁIEI = J2(]1ﬁ1,<12, J1¢21£l) = ()

for every u! belonging to M(epx*e?). Now if M(€Me?) is everywhere
dense in M(), then M(ek*e?) is everywhere dense in M(ep), or,
O'M (egx*e2) = O'IM(e). Since &' is in M(ey) and also in O'M(ep), it
follows that & =01.

THEOREM 8. Assume that k2 is of type M ()M (e2), and ¢2' is by
rows-conjugate of M(e!) such that k2, $*' are biorthogonal as to e'ee me?.
Then

(1) ™12, k*21 are contraceding as to e'eme’;

(2) M(e2Me2) CTM(e2kel);

(3) w!=J22T19p2 Ut for every pt in M(ezpe?);

(4) M(eNe) C [T92u!] ulin M(ENE)];

(5) M(pe?) DM (&N e if and only if M (e2kel) contains [J'p? ! | !
in M(eNe)].

PRrOOF. Since «'? is by rows-conjugate of M(e2Me), we make use
of (4.2) in Theorem 4 and secure

T2 = JlelJostp¥12,2 — J2ovg*12,2

for every u? belonging to M(e2M\e2). This proves (1). Part (2) is an
immediate consequence of (1) just proved. For the demonstration of
(3), we note that € is by columns of M (ek*e?) and hence by Defini-
tion 2, we have

J] e1“"71 — J2 (J1€1KK12 , Jl¢21 111) — ]2K12J1¢21 7’1
for every n' in M(ejpe?). Since M(e}) is a subset of M(e), we have
Jlénl=n', and hence, part (3). To prove (4), consider any u? in
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M(e2Me). Let u be a vector in MM(etMek) for which J2#'g*122 =y,
Then by (1)

1211 1 21 26" %12 2 26" 2 2 2
Jou=JdJ ¢ p=J eu=un,

whence (4) follows. In part (5), if M(eipez) D M(e;Mew), then

1211

o™ | ' in Mese)] D 767w [ 4! in M )]

By (C), the left-hand side is identical with I (e?M€}s), which by part
(2) is a subset of M (e%ke.). The converse is obvious.

THEOREM 9. Let € be idempotent as to €, and k? be of type
M) M(e2). Suppose that $p2* is by rows-conjugate of M(ey) and x'?,
@2 are biorthogonal as to e‘eye?. Then we have the following conclusions:

(1) @2t is complete by rows-conjugate of M () ;

(2) ur=TJ22J'921 for every u' in M(epe?);

(3) M(edpe?) = [T2kM2u| u? in M(e2MN k) | CM (M ess) ;

(4) M(e2M ) CM(e2ke) ;

(5) if 2 is by columns of M(€?), then €= J2k 22! and k'? is com-
plete by columns of M(ey);

(6) M(de®) D MM\ ew) if and only if every vector in IM(eM\ey)
is expressible in the form J*k'%u?, where p? is a vector in M (e egs).

Proor. Part (1) follows from Theorem 7, for M(e2N€) is every-
where dense in 9(e2) when «!2 is of type MM(e)M(e?). Part (2) is
proved in the same way as part (3) of Theorem 8 with the replace-
ment of € by ¢. By Theorem (C), part (3) is a consequence of (2).
Part (4) follows from (3). For part (5), we note that € is by columns
of M(elpe?); hence the first conclusion follows from (2) whereas the
second follows from (1) and the fact that ¢*!2, k*?! are biorthogonal
as to elee2. Part (6) is a consequence of (3).

THEOREM 10. Suppose that k2 is of type M(e")M(e2), p** is by rows-
conjugate of M(el), and k%, Pp2! are biorthogonal as to e'e.e2. Then the
following assertions are equivalent:

(1) (N e D M(exed)

(2) k'24s complete by rows-conjugate of M(e?) and M(epe?) contains
m(éim 6,1‘.) N

(3) k'%4s complete by rows-conjugate of M(e?) and M(e*ke.) contains
[T'02 1| ut in M(eENen) ]

(4) k*2, ¢*12 gre contraceding as to €%eel, and k' is complete by
rows-conjugate of M(e?);
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(5) [J'¢¥u'|w’ in M(€Mel) IDM(e2xey).
If one of the preceding five conditions is valid, then €= .= J'¢p2 k2.

Proor. The equivalence of the second and third conditions follows
from (5) of Theorem 8. Conditions (1), (2), (4), and (5) are equiva-
lent because of Theorem 2, where «, ¢, €, €% € are replaced by
K*, d*, €, €, €5+ respectively. The relation €= J'¢2'x'? follows from
(4), since k2 is by columns of M (&M ek).
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