
SOME ASPECTS OF THE PROBLEM OF 
MATHEMATICAL RIGOR1 

HASKELL B. CURRY 

1. Introduction. The cue for the title to this address is taken from 
that of one by Pierpont before the Nashville meeting of this Society 
several years ago.2 This is typical of a number of expository treat­
ments of this topic which have been presented to the mathematical 
public in recent years.3 In the present paper I shall discuss the same 
theme in a somewhat different manner. Relying upon these expository 
addresses for the historical background, I propose to treat certain 
aspects of the subject which have been rather neglected in them. The 
discussion is frankly from a single point of view, which is a species of 
formalism. I shall try, in the first place, to explain the fundamental 
concepts of formalism, and, in the second place, to add some new sug­
gestions and criticisms in matters of detail.4 

The problem of mathematical rigor is that of giving an objective 
definition of a rigorous proof. If you will examine your ideas on this 
subject I think you will agree that there is something vague and sub­
jective about them. This does not mean, of course, that they are un­
satisfactory for the needs of working mathematicians. In daily life, 
when we say that a piece of cloth is a yard wide, we really mean that 
its width is a certain legally defined fraction of the distance between 
two scratches on a metal bar located in Paris ; nevertheless we do not 
rush to Paris when we wish to verify that a piece of cloth has this 
property. Secondary standards of varying degrees of accuracy suffice 
for the needs of daily life and of science ; but neither science nor busi­
ness would be possible without exact primary standards. Even so we 
need a primary standard of rigor in mathematics. The definition of 
such a standard, and the elaboration of practical secondary standards 

1 An address delivered before the meeting of the Society in New York City on 
October 26, 1940, by invitation of the Program Committee. 

2 J. Pierpont, Mathematical rigor, past and present, this Bulletin, vol. 34 (1928), 
pp. 23-53. 

3 See for example A. Dresden, Some philosophical aspects of mathematics, this Bulle­
tin, vol. 34 (1928), pp. 438-452; G. H. Hardy, Mathematical proof, Mind, vol. 38 
(1929), pp. 1-25; E. R. Hedrick, Tendencies in the logic of mathematics, Science, vol. 77 
(1933), pp. 335-343. 

4 For views related to those here presented, see my paper Remarks on the definition 
and nature of mathematics, Journal of Unified Science, vol. 9, pp. 164-169. This is an 
abstract of an address delivered before the Fifth International Congress of Unified 
Science at Cambridge, Massachusetts, September 5, 1939. 
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in relation to it, constitutes the outstanding problem of the founda­
tions of mathematics. 

This problem is evidently tantamount to finding exact criteria for 
the truth of a mathematical proposition. For we should regard a rigor­
ous proof as a process of making manifest the truth of its conclusion ; 
and the problem of rigor is inseparable from that of truth. 

2. Critique of the non-formal theories of mathematics. There are 
three main types of view as to the nature of mathematical t ruth; 
these I shall call realism, idealism, and formalism. The first of these 
is the view that mathematical propositions concern the real world 
(in the sense of our physical environment); the second holds that 
mathematics deals with mental objects of some sort. These two views 
have in common the notion that mathematical propositions have an 
essential subject-matter or content, with respect to which truth and 
rigor are definable; they are what the Germans would call "inhalt-
lich." Since there is no satisfactory translation of this word into 
English,5 I propose that we call them contensive, where 'contensive' 
is derived from 'content' in the same way as 'intensive' from 'intent.' 
The formalist view will form the main subject of the present paper; 
but before we take it up it will be appropriate to consider a few re­
marks about the others. 

The realist view evidently does not need to be taken seriously at 
the present time. Of course it is the original view—the mathematics 
of primitive peoples is essentially empirical—and it is tenable for sim­
ple arithmetic propositions such as a 2 + 2 = 4 . But that the infinitistic 
conceptions of modern mathematics have no counterpart in the ex­
ternal environment is a point which needs no elaboration. 

The idealist view has many varieties according to the nature of 
the mental objects on which it is based. On the one hand there is the 
view, called by Bernays6 Platonism, which ascribes an independent 
existence to all the infinitistic conceptions of mathematics; at the 
other extreme there is intuitionism, which denies this existence, but 
bases everything on an a priori intuition. Whatever the nature of 
these mental objects, all forms of idealism are subject to the same 
fundamental criticism, namely, that the criterion of truth is vague at 
best, and the existence of the mental objects is a metaphysical hypoth-

6 Translations sometimes used are 'material' and 'intuitive' ; but these have un­
desirable connotations. 

6 P. Bernays, Sur le platonisme dans les mathématiques, L'Enseignement Mathé­
matique, vol. 34 (1935-1936), pp. 52-69. There are naturally many different varieties 
of Platonism and also, for that matter, of intuitionism. 
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esis from which mathematics should be free, if it is to be an objective 
science. 

That this criticism applies to Platonism has been shown by its in-
tuitionist critics, and is now fairly generally admitted. But it also 
applies to more moderate forms of idealism, and even to intuitionism 
itself. For the vagueness of the fundamental "oerintuitie der wis­
kunde" has been noticed by several persons; and Heyting himself, in 
his Ergebnisse report of 1934, explicitly denies the possibility of de­
scribing it exactly.7 On the other hand it is clear from the intuitionists' 
writings that they conceive their fundamental intuition to be (1) es­
sentially a thinking activity,8 (2) a priori,9 (3) independent of lan­
guage,10 and (4) objective, in that it is the same in all thinking 
beings.11 The existence of an intuition having these properties—or 
even the first three of them—is an outright assumption. It is doubtful, 
indeed, if there is any a priori knowledge; and it has been rationally 
maintained that thinking of any kind is impossible without language. 
Furthermore the fourth property, although it is absolutely vital if 
intuitionism is to give any account of mathematical truth at all, 
seems patently incompatible with the other three. In short, the in-
tuitionist definition of mathematics has meaning only for one who 
postulates an a priori intuition which is both objective and pre-lin-
guistic. Although such a postulate is agreeable to certain types of 
philosophy, yet it is an assumption for all that ; and one which, from 
other points of view, is highly dubious and metaphysical. 

The intuitionist school has made contributions of great value to 
the foundations of mathematics. Not only have they cleared away 
much of the rubbish of old-fashioned Platonism, but they have helped 
to sharpen the ideas of the formalists. We shall see later that most of 
the constructive suggestions of the intuitionists, when cleared of their 
metaphysics, find their justification in modern formalism. But 

7 A. Heyting, Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie, 
Ergebnisse der Mathematik und ihre Grenzgebiete, vol. 3, no. 4, Berlin, Springer, 
1934. See for example, page 12 where he writes "Überdies ist es an sich widersinnig, 
die Möglichkeiten des Denkens in das Mieder bestimmter zuvor angebener Kon-
struktionsprinzipien zwangen zu wollen. Man muss sich also darauf beschrânken, 
durch mehr oder weniger vage Umschreibungen in dem Hörer die mathematische 
Geisteshaltung hervorzurufen." 

8 "Eine konstruktive Tâtigkeit unseres Verstandes" (Heyting, loc. cit., p. 2). 
9 "Die mathematischen Gegenstànde werden von dem denkenden Geist unmittel-

bar erfasst; die mathematische Erkenntnis ist daher von der Erfahrung unabhângig." 
(Heyting, loc. cit., p. 3.) 

10 Cf. Heyting, loc. cit., p. 13. 
11 A fifth characteristic, its relation to time, is irrelevant for us. 
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the fundamental basis of their theory is a metaphysical doctrine. 
Before leaving the subject of contensive definitions it will be neces­

sary to consider the term logicism (or logisticism). It is sometimes 
maintained that there are three principal views as to the foundations 
of mathematics: intuitionism, formalism, and logicism, where the last 
is the view that mathematics is reducible to logic. If we had a satis­
factory definition of logical truth and of logical rigor, logicism would 
solve our problem very nicely. But the paradoxes have shown that 
this is not the case ; and in fact logic is as much in need of definition 
as mathematics. Hence to say that mathematics is logic is merely to 
replace one undefined term by another. Practically all competent 
writers realize this ; and those who maintain that mathematics is logic 
generally couple this contention with some explanation of what logic 
is. But when we take these definitions of logic into account, the re­
sulting definitions of mathematics are not a unified view according 
to the classification here adopted. Ramsey was a Platonist; Frege 
was essentially a formalist, and most of the modern writers who are 
popularly classified as logicists are definitely so. 'Logicism/ then, is 
not the name of a distinct view in regard to the foundations of mathe­
matics. 

From these considerations we see that a satisfactory contensive 
definition of mathematical truth and rigor has not been made; and 
indeed there is reasonable doubt as to whether such a definition is 
possible. Although such conceptions are current among mathema­
ticians, they are useful only as secondary standards. 

3. The notion of formal system. This brings us to formalism. Ac­
cording to this view the emphasis is not on the content of mathemati­
cal propositions, but on the method of derivation. We have an exact 
definition of a rigorous proof, and identify truth with the existence 
of such a proof. 

The precise analysis of this rather vague definition requires pre­
liminary consideration of some basic concepts. The first of these con­
cepts is the notion of formal system.12 This is a refinement of the naive 
notion of a postulate system, and it will be convenient to introduce 
the new notion by taking an example of the latter notion and formal­
izing it. The example selected is Dickson's postulate set for group 
theory,13 as follows: 

12 This statement is meant in the sense that the notion of formal system is taken 
as basic in the present paper, not that it is characteristic of formalism as such. Cf. 
below, §5. 

13 L. E. Dickson, Definition of a group and afield by independent postulates, Trans­
actions of this Society, vol. 6 (1905), pp. 198-204. 
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DICKSON'S POSTULATES FOR GROUPS 

A. Primitive ideas. G, o. 
B. Postulates. 

1. If a and b are elements of G, then a o & is a uniquely determined 
element of G. 

2. If aj b, c are any elements of G, then 

a o (b o c) = (a o b) o c. 

3. There exists an element e of G, such that for any element a of G 

ao e = a. 

4. For each element a of G there exists an element a' such that 

ao a' = e. 

This set of postulates determines a set of theorems which are de­
rived from them by the processes of logical deduction. But, as we have 
seen in the discussion of logicism, this is not an objective characteriza­
tion. It is necessary to specify in detail the way in which theorems are 
to be derived. 

A formal system may be naively described as what such a postulate 
system becomes when we put in these refinements. More precisely, 
such a system is defined by a set of conventions, which I shall call its 
primitive frame. These conventions are of three kinds, as follows: first, 
those which specify the objects of the system, which I shall call its 
terms—in the case of group theory these are the elements of the group ; 
second, those determining a set of propositions, which I shall call the 
elementary propositions, concerning these terms—in the case of group 
theory these are the equations; and third, those which specify which 
of the elementary propositions are true, that is, are theorems.14 These 
specifications have the form of recursive definitions. Thus the term-
specifications give a list of primitive terms, or tokens, together with 
operations and rules of term formation which describe how further 
terms are to be constructed from the tokens. The specifications for 
elementary propositions consist of a list of predicates (properties, rela­
tions, and so on) together with rules of proposition formation for con­
structing elementary propositions by means of them. Finally, the 
specifications for theorems consist of a set of elementary propositions, 
called axioms, which are stated outright to be true; together with 
rules of deduction showing how further theorems are to be derived. 

14 Throughout this paper I shall use 'theorem' in the sense of 'true proposition.' 
Thus an axiom is a theorem by definition. 
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As in recursive definitions generally a property of closure is under­
stood, namely, that the specifications give all the entities recursively 
—for example, all the terms are obtained by the processes described 
in the term specifications, and so on. 

For a system G, related to group theory, the primitive frame is as 
follows : 

SYSTEM G 

I. TERMS. 

A. Primitive terms, or tokens, e, #i, • • • , an. 
B. Operations, o (binary), ' (unary). 
C. Rules of term formation. 

1. If A and B are terms, A o B is a term. 
2. If A is a term, A' is a term. 

II . ELEMENTARY PROPOSITIONS. 

A. Predicates. — (binary). 
B. Rule. If A and B are terms, then A=B is an elementary 

proposition.15 

III . THEOREMS. 

A. Axioms. If A, B, C are terms, then— 
1. Ao(BoC) = (AoB)oC1 

2. A oe = A, 
3. AoA' = e. 

B. Rules of deduction. For any terms A, B, C— 
1. If A=B, then B=A. 
2. If A =B and B = C, then A = C. 
3. If A=B, then CoA=CoB. 
4. If A = B, then A o C = B o C. 
5. If i !=J3 , t hen i4 '= .B ' . 

The following remarks are intended to clear up certain points in 
regard to the primitive frame. (What a formal system essentially is 
will concern us later; for the present we are interested only in the 
specifications by which a formal system is defined.) 

First, as to the symbols used. In the above statement of the primi­
tive frame the symbols 'ey'

 lau • • • , 'on,' <c>/ ">' l— ' a r e u s e d to 

designate definite constituents of the system ; on the other hand the 
capital letters, parentheses, and also words such as 'proposition' are 
to be taken as part of ordinary language.16 The capital letters, in 

15 On the omission of quotation marks here see Footnote 20. 
16 Ordinary language must here be understood as including the use of variables 

and parentheses in the way in which they are employed in mathematics. 
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particular, are intuitive variables whose values are unspecified terms. 
Thus the specifications III A are to be understood in the sense that 
for each particular determination of 'A,' 'B,' 'Cf' each of the three 
propositions stated is an axiom; there are, therefore, infinitely many 
axioms subsumed under three axiom-schemes.17 

Again, the conventions I, II, have a different character from III , 
and it is convenient to have a name for them collectively. I shall call 
these specifications and considerations based on them morphological, 
as opposed to the conventions III which will be called theoretical. The 
morphology of the system G has evidently a quite trivial character; 
in more sophisticated systems we may have a much more complicated 
morphology—involving different categories of terms, or even a whole 
hierarchy of types, relations between terms and definitions of compli­
cated derived notions such as substitution. But we must suppose in 
all cases that the morphological specifications enable us to determine 
whether a given combination of symbols denotes a term (or an ele­
mentary proposition).18 

These notions may be made somewhat clearer if I add a word or two 
concerning the interpretation. In the system G the ai, • • • , an may 
be thought of as the generators of the group. On the other hand it 
may be shown that if in any theorem involving any ai we substitute 

17 This term is due to J. von Neumann, Zur Hilbertschen Beweistheorie, Mathe­
matische Zeitschrift, vol. 26 (1927), pp. 1-46. 

18 It is to some extent arbitrary what considerations are taken as morphological; 
for in case of systems with a complicated morphology—say with different types of 
terms—we can take these types of terms as new predicates and transfer the rules con­
cerning them into the theory. If this is carried to the limit we should arrive at a formal 
system, like the system G, in which there is only one category of terms, and it is not 
really necessary to state any morphological rules beyond giving the number of argu­
ments for each operation and predicate. The natural formulation of the primitive 
frame on such a basis would be— 

I. Primitive ideas. 
A. Tokens (primitive terms). 
B. Operations (classified as to number of arguments). 
C. Predicates (do.). 

I I . Primitive theorems. 
A. Axioms (that is, elementary primitive theorems). 
B. Rules. 

Such a system let us call a completely formal system. Evidently it is the more definite 
concept, and for a primary standard of mathematical rigor it forms the proper basis. 
G is an example of such a system. In most theories, however, there is a class of theo­
rems, of a relatively trivial nature (from the point of view of that theory) which it is 
convenient to take unformalized. The concept of a formal system, with the possibility 
of some complication in the morphology, is thus more easily fitted to existing theories 
than that of a completely formal one. 
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an arbitrary term A for d{, the result is again an elementary theorem. 
It follows that the a» may also be thought of as variables, and that 
the system contains those general equations of group theory which 
do not contain more than n variables. To include all equations we 
must, naturally, postulate infinitely many primitive terms. If a sub­
stitution rule is added to the rules as Rule 6, then the axiom schemes 
may be replaced by three single axioms as follows : 

1. aiO (a2o a3) = (#i o a2) o a3, 
2. a\0 e — du 
3. aioai —e. 
The above formal system has of course a quite trivial character. 

(I do not claim that it is an adequate formalization of all of group 
theory.) On account of limitations of time, however, it will have to 
do as an example. 

4. Discussion of the nature of a formal system. Let us now turn 
to the discussion of some points about the nature of a formal system. 
We shall inquire in what sense we may think of a formal system as 
an object, and whether we are justified in the use of the words 'propo­
sition' and 'true' in connection with it. Also, on account of the promi­
nence given to the question by Hubert, it is necessary to say something 
about the relation of a formal system to symbolism; in this section 
and the next I shall defend the thesis that the extreme nominalism, 
with which formalism is now popularly associated, is no essential part 
of the doctrine. 

As a preliminary to this discussion we must take account of the 
distinction between the use of a symbol as denoting something and 
the consideration of that symbol as an object. This is illustrated by 
the two sentences19 

1. co is an order type. 
2. co is a Greek letter. 

From these it would be false to conclude that a Greek letter is an 
order type. Of course, under certain circumstances it is legitimate to 
use a symbol to designate itself. But, for maximum definiteness, I 
shall, when talking about a symbol (or expression), use a specimen of 
that symbol (or expression) enclosed in single quotation marks as a 
name for it.20 

19 These are due to R. Carnap, Logical Syntax of Language, London and New York» 
1937 (German edition, 1934), p. 156. Some changes in wording have been made. 

20 This notation is due to Frege (see, e.g., Grundgesetze der Arithmetik, vol. 1, 
Jena, 1893, p. 4) and is now quite generally used by logicians. However, the distinc­
tion itself is made in some manner by linguists as a matter of course (and doubtless 
was before Frege's day). The distinction is important wherever the discussion has 
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In setting up the primitive frame of a formal system we are, of 
course, introducing certain symbols; and, although we do not define 
these symbols in the ordinary sense, yet we do specify how they are 
to be used in connection with words of ordinary language (such as 
'proposition' and 'true'). Thus, for G, in I A we say in effect that 
'e,' '#1/ • • • , 'dn are nouns; we do not say what they are the names 
of, but they are names of some objects or other, which objects we 
call terms. Let us call these symbols the primitive term nouns. Then 
in I C we state that certain further expressions, formed from the primi­
tive term nouns, the operators 'o' and 'V and parentheses, are also 
term nouns. II says that ' = ' is a verb, and that elementary sentences 
are formed by placing it between two term-nouns. It is evident that 

specific reference to the relation between symbols and their referents; but I think the 
confusion caused by non-observance of the distinction in ordinary mathematics is 
somewhat exaggerated. For discussion of this question cf. R. Carnap, Logical Syntax, 
pp. 156-160, or W. V. Quine, Mathematical Logic, New York, 1940, §4. 

The discussion in the text has primary reference to symbols and expressions which 
are nouns. With respect to other types of expressions there should be at least a three­
fold, rather than a twofold, distinction. Thus, in connection with sentences we need 
to distinguish (a) the sentence as asserting something, (b) a noun naming the proposi­
tion asserted, and (c) a name for the sentence as a linguistic phenomenon. In the pres­
ent paper I use the same expression in senses (a) and (b), relying upon the context to 
make the distinction clear. There is abundant precedent for this uage, both in ordi­
nary and technical discourse, and it avoids overburdening the discussion with exces­
sive symbolism. Nevertheless, a systematic method of making the distinction would 
be desirable. Such a method would be to use "corners," as in Quine's "quasi-quota-
tion" (loc. cit., pp. 33-37, or Journal of Symbolic Logic, vol. 2, p. 146). This should 
be subject to the same rules as his quasi-quotation in regard to substitution for intui­
tive variables, so that, for example, we might write the conventions II of the primitive 
frame for G as— 

There is one binary predicate, r = .1 
If A and B are terms, then IA —B\ is an elementary proposition. 

If this is coupled with an understanding of what symbols are intuitive variables we 
should have a satisfactory notation. 

The distinction between (a) and (b) may be what the Principia Mathematica (and 
also Frege) had in mind in introducing the assertion sign '|—.' However their explana­
tions in this connection are somewhat vague. All that is clear is that ' r - ' is placed 
before a noun to make a sentence—that is, it is an intransitive verb. It is therefore 
natural to use this symbol for the single unary predicate in formal systems which 
have such; it then corresponds to Hubert 's 'ist beweisbar.' 

The neglect of the distinction between (b) and (c) seems to me to cause as much 
confusion as the neglect of that between (a) and (c). On this point compare the dis­
cussion of 'presentation' below. 

It should be understood that single quotation marks, and these only, are used in 
the technical sense stated. Double quotation marks are used as in ordinary language. 
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what has been said could be expanded into a way of stating the primi­
tive frame, and that the new way of statement would be essentially 
equivalent to the preceding one. 

The new form of statement, however—aside from the disadvan­
tages inherent in its greater cumbersomeness—is a decided misplace­
ment of the emphasis. To a mathematician the older form of statement 
indicates that the particular symbols used are irrelevant ; whereas the 
newer form appears to be tied to a particular choice of them. Let us 
call a particular statement of the primitive frame, with a particular 
choice of symbols, a presentation of the system. Then the newer mode 
of statement connotes that we have to do with a particular presenta­
tion. On the other hand, a formal system is to be understood as an 
abstraction from its presentations. This does not mean that a formal 
system is a mystic entity subsisting apart from its presentations. In­
deed the question of the philosophic nature of such an abstraction is 
irrelevant to the present discussion. All we need to know is that when 
we think of a presentation as that of a formal system we regard cer­
tain features as essential and others as irrelevant, and that what we 
have to say applies equally well to any other presentation agreeing 
in the essential features. A similar remark applies to the words 'propo­
sition,' 'predicate,' and so on, as opposed to the corresponding lin­
guistic words 'sentence,' Verb' (or 'sentential function'), and so on.21 

The next question is the indeterminacy which we have already no­
ticed in regard to the terms. The primitive frame does not assign any 
definite objects to the term nouns. We are then free to make what 
determinations we please. Let us call any determination of such ob­
jects, which assigns a unique term-object to each term noun and con­
versely, a representation of the system. Then, given any presentation 
of the system, we can always supply a representation. In fact we can 
construct a mechanical model in which the tokens are different kinds 
of buttons and the operations are different ways of tying them to­
gether. A scheme of doing this for the system G using auxiliary gadg­
ets for the operations is shown by the diagrams. (Here it is to be un­
derstood that the holes are for the attachment of strings from the con­
stituents A,B\ while the rings are for attachment of a string connect-

21 It is not even necessary that the essential features be precisely formulated. As 
ordinarily used 'proposition' is a vague word, in that no exact criteria are given for 
deciding when two sentences express the same proposition. This vagueness is harmless 
because we seldom or never have occasion to ask the question indicated. The word is 
useful because it indicates in a rough way the level of abstraction at which we are 
operating; which is better than no indication at all, or a misleading one. 
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ing to an operation when the term — A o B or A' is itself a constit­
uent of a more complex term.) 

When this is done the term nouns have been given acontensive mean­
ing. Now the system does not admit of any further determination of 
such meaning. The indeterminacy which was noted for the terms does 
not extend to the predicates; for the rules II enumerate all of the 

to A 

Q. 
\P 

to A 
toB 

A OB 

significant instances of these predicates and III all the true instances, 
so that the predicates are defined completely by the primitive frame. 
Thus in the above representation the pairs of artifacts between which 
the relation of equality holds are defined by the primitive frame and 
nothing else. Consequently although the terms are unspecified, yet 
for any formal system it is always possible to construct a representa­
tion supplying this deficiency. The elementary theorems hold without 
regard to how this is done. The representation is therefore an acci­
dent; and a formal system is an abstraction from its representations 
just as it is from its presentations. 

The notion of representation just discussed must be distinguished 
from another notion, that of interpretation. We speak of an interpreta­
tion of a formal system when the elementary propositions are put into 
relation with certain contensive propositions independently defined. 
Thus we can interpret G in a well known manner as a group of trans­
formations, where two transformations are regarded as equal when 
they associate the same image with each point. This interpretation 
is a valid one, because the transformation processes associated with 
(formally) equal terms are also equal contensively ; but the converse 
is not true. In the case of a representation such questions of validity 
cannot arise; all representations are isomorphic by definition. 

A formal system, then, is something which is abstract in two ways; 
first, as to the symbols used to present it, and second, as to the objects 
used to represent it. The truth of the elementary propositions is in-
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dependent of these contingencies. Moreover by virtue of the con­
ventions III (and the closure property mentioned at the beginning) 
an elementary proposition is true when and only when there exists 
a sequence of elementary propositions, of which the given proposition 
is the last, such that every proposition in the sequence is either an 
axiom or is derived from certain of its predecessors by a rule of de­
duction. What an elementary proposition asserts is, therefore, pre­
cisely the existence of such a proof. Assuming that the specifications 
for axioms and rules have a sufficiently definite character—which is 
to be taken as part of the definition of a formal system—the checking 
of an alleged proof is an objective process.22 An elementary proposi­
tion therefore states a question or problem such that an affirmative 
answer can be verified objectively, without any indeterminacy what­
ever. 

5. The notion of a calculus. Although the notion of formal system 
is here taken as fundamental, yet other related notions are now more 
popular among specialists. As a typical such notion let us discuss here 
the notion of calculus as defined by Scholz.23 

In a calculus it is explicitly stated that the objects we are dealing 
with are symbols. We start with a certain stock of symbols and with 
two kinds of rules for manipulating them. The first kind of rules, 
called formation rules, specifies recursively a certain set of expressions 
—that is, linear sets of symbols—which set I shall call formulas. The 
second set of rules, called transformation rules, specifies a class of 
formulas which I shall call assertible formulas ; the rules consist of 
first a definite list of formulas, called here axiom formulas, which are 
assertible, and second, rules determining recursively how further as­
sertible formulas are to be constructed. 

Now it is evident that the rules of a calculus must be stated in a 
language such as English ; and since the subject matter is symbols and 
expressions, the rules have somewhat the same character as the rules 
of syntax in grammar. For that reason the language is called the syn­
tax language. On the other hand the expressions being talked about 
have also, in virtue of their being ordered by the rules, some of the 
properties of a language ; and it is customary to refer to them as con-

22 We may require of a proof that not only is the sequence of propositions stated, 
but the reasons for the inference at each stage. 

23 H. Scholz, Was ist ein Kalkül una was hat Frege für eine punktliche Beantwortung 
dieser Frage geleistet, Semester Berichte (Munster), 7th Semester, Summer, 1935, 
pp. 16-22. The notion is similar to that of R. Carnap, Logical Syntax, pp. 4-8, 167 ff., 
but is somewhat more explicit. 
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stituting the object language. There are thus two languages associated 
with a calculus, and the calculus may be thought of as a statement 
of the syntax of the object language in the syntax language. However 
the object language is a language only in a highly technical sense; it 
may or may not be a language in the usual sense. 

Let us now consider the relations between a calculus and a formal 
system. We shall see that a formal system can be converted into a 
calculus, or something essentially similar, in two ways, either of which 
can be carried out mechanically. Conversely, by passing to a higher 
level of abstraction, a calculus can be converted into a formal system. 

The process indicated in the discussion of presentation gives a 
method of forming a calculus from the symbols of the presentation. 
Thus, for the above presentation of the system G, take as symbols 
'e,' 'ai,' • • • , 'an,' 'o,' 'V ' = / ' ( / 'Y \ take as formulas the elementary 
sentences, and as assertible formulas those which express true propo­
sitions. Then, reinterpreting the rules, we have a calculus. This proc­
ess I shall call calculization of the presentation. It is subject to the 
objections which were mentioned in the discussion of presentation. 

Another way of reducing a formal system to a calculus is to repre­
sent the system symbolically. A uniform process for doing this is 
illustrated by the following procedure for G; Let e, #i, • • • , an be 
respectively 'e,' 'a^ • • • , 'a„,' and let '</>,' 'i/V be two new symbols; 
for given terms A and B} let A o B be the expression got by writing 
in order first '<£,' then A, then B; and let A' be obtained by prefixing 
'yp1 to A. That this is a representation follows by certain results of 
Lukasiewicz.24 Then the terms will be a certain class of expressions 
which we can take as formulas. The resulting representation is not 
a calculus, because a relation between formulas and not a class of 
formulas is defined, but it has the essential nature of a calculus, and 
may be called a generalized calculus.™ The reduction would lead pre­
cisely to a calculus if the original system had a single unary predicate ; 
and by a rather trivial change every formal system can be reduced to 
one of that character.26 By this mode of reduction—as in any repre­
sentation—the symbols of the primitive frame belong to the syntax 

24 J. Lukasiewicz and A. Tarski, Untersuchungen uber den Aussagenkalkul, Comptes 
Rendus de la Société des Sciences et des Lettres de Varsovie, class I I I , vol. 23 (1930), 
p. 31. where references to earlier papers by Lukasiewicz (in Polish) may be found. 

25 The Church theory of conversion is an example of such a generalized calculus 
which occurs in the literature. See A. Church, Mathematical Logic, Princeton Univer­
sity (mimeographed), 1936, chap. 1. 

26 For the system G this can be done by introducing a new binary operation * and 
unary predicate (—, then replacing A —B by \— (A*B). 
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language, and the object language is the invented representation.27 

In a calculus we do not consider all properties of the symbols, but 
only such as follow from the syntactical rules. Thus a calculus is to a 
certain extent abstract. We can make this abstractness explicit by 
converting to a formal system. In fact, using methods due to Tarski 
and Hermes28 we can find a (represented) formal system such that 
the tokens are the object symbols, the terms are the expressions, there 
is a single unary predicate, and the elementary theorems ascribe this 
predicate to those and only those expressions which are assertible for­
mulas. We then have a formal system of a special kind with a sym­
bolic representation. The object language can now be abolished 
altogether. Other processes of formalization—in which the terms are 
formulas or other special classes of expressions—may be possible ; and 
if the calculus is obtained by calculization of a formal system, a proc­
ess of formalization can be found which will bring us back to another 
presentation of the original formal system. 

These considerations show that a formal system and a calculus are 
essentially equivalent notions. A calculus is, in fact, merely a formal 
system tied to a special representation. This representation is acci­
dental. A formal system is just as exact a notion; it does not force 
emphasis on extraneous considerations; it requires only one set of 
symbols, and these are adjuncts to the language we use, not that 
which we talk about; it leaves the way open for representations in 
ternis of some subject matter more suggestive than symbols; and a 
symbolic representation can be manufactured for it when needed. For 
these reasons the notion of formal system is here preferred as the 
fundamental notion of formalism. 

So much for the notions of formal system and calculus. The im­
portant point is that for elementary propositions we have an objective 
criterion of rigor. We turn now to the consideration of propositions 
which are not elementary. 

6. Metatheory. In the actual study of a formal system we do not 
confine ourselves to deducing elementary propositions step by step. 
Rather we take the formal system as datum, and, having defined the 

27 In the case of a completely formal system (see Footnote 16) with one unary 
predicate, this object language would consist of formulas and coordinating conjunc­
tions only. 

28 E.g., see A. Tarski, Einige Betrachtungen iiber die Begriffe der co-Widerspruchs-
freiheit und der u-Vollstândigkeit, Monatshefte für Mathematik und Physik, vol. 40 
(1930), pp. 97-112, and H. Hermes, Semiotik, Forschungen zur Logik und zur Grund-
legung der exakten Wissenschaften, new series, vol. 5, 1938. 
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object of study by setting up the primitive frame, we investigate it 
by any means available. In so doing we may formulate further propo­
sitions. I shall call these non-elementary propositions rnetaproposi-
tions (when true, rnetatheorems), and the method of study which gives 
rise to them the metatheoretic method. 

We have already had an example of a metatheorem, namely, the 
substitution rule for the system G. It will be instructive to consider 
this theorem a little more carefully. First we need a precise definition 
of what we mean by the result of substituting the term C for the 
token ai in the term A. Let us call this result A*. Ordinarily we define 
it with reference to the symbols used to designate A and C; but this 
apparent dependence on symbols can be avoided by defining A* re­
cursively thus (here ' = ' denotes definitional identity): 

1. af EEC; 

2. If A is a token distinct from at-, A*=A; 
3. (AoB)*^A*oB*; 
4. (A')*^(A*)'. 

The theorem, now, is the following: Suppose that A and B are terms 
such that 

(1) A=B, 

and C is a term, then 

(2) -4* = B*. 

Without going into details we may notice that the proof contains two 
essential steps. First, the conclusion is true if the hypothesis is an 
axiom; in fact then the conclusion is an axiom. Next, suppose the 
hypothesis is derived by a rule of procedure from certain premises, 
and that we have already shown that the theorem holds for these 
premises; then the same rule of procedure allows us to derive the 
conclusion from the transforms of the premises. At this point it is 
customary to say that the theorem follows by induction. However, 
what we have actually done is to exhibit a process whereby, given a 
proof of (1), we can convert it step by step into a proof of (2). 

The variety of metatheorems is immense. Some further examples 
are the following. In the first place we may have simple combinations 
of the elementary propositions, namely, 

ai o e = e o ai = ai, 

which may be regarded as a conjunction of three elementary theo­
rems. Then there are general theorems conjoining whole classes of 



236 H. B. CURRY [April 

elementary propositions such as 

A'oA = e 

(the axiom schemes, considered as single propositions, are of this char­
acter) ; or derived rules, such as— 

If A o B = e, then B = A'. 

Again we may introduce additional operations and predicates by re­
cursive definitions, and consider general theorems concerning them, 
like the one just treated or the generalized associative law. Moreover 
there are properties of the system as a whole; such as consistency, 
completeness, and resolvability. We may also consider the relations 
of a system to other systems, in particular to its own subsystems and 
supersystems, its extensions of various kinds and so on. Here we tap 
the resources of modern algebra, with its extensions and ideals, in­
cluding the four morph brothers—homo-, iso-, auto-, and holo-. Such 
metatheorems form the very life and soul of mathematics. Finally we 
may have considerations relating a system to extraneous (non-mathe­
matical) considerations, idealistic hypotheses, or what not, such as 
the semantical investigations of Tarski and Carnap. 

If the notion of formal system is taken as a basis, these metatheo­
rems are expressed in the same language as the elementary theorems. 
Metatheory is thus not quite the same notion as Hilbert's metamath-
ematics, although it is related to it. Hubert sets up a calculus which 
may be regarded as the calculization of a portion of mathematics ; and 
then calls the study of this calculus metamathematics. This is, to say 
the least, an unfortunate terminology. Hilbert, presumably, does not 
mean to imply that mathematics is merely a meaningless playing with 
the counters of his calculus, but rather that mathematics is an activ­
ity carried out in an interpreted object language from which meaning 
has been abstracted in the process of calculization ; on the other hand 
his calculization does seem to imply, insofar as mathematics is formal, 
that the only legitimate mathematics is the explicit derivation of ele­
mentary theorems. But metatheorems have as good a right to be 
called mathematical as elementary ones; moreover from the general 
point of view which I shall mention later, Hilbert's metamathemat­
ics is a branch of mathematics rather than something which tran­
scends it. Furthermore, we have already seen that if Hilbert's calculus 
is formalized we come back to another presentation of the original 
mathematics in the syntax language. The absolute separation of 
mathematics and metamathematics is fictitious. Hilbert's calculiza-
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tion had, I think, a psychological purpose, which it served well; but 
there is no sound basis for affirming the necessity of any such process. 

As to the criteria of rigor for metatheoretic proofs, it is evident that 
we cannot handle the question as definitely as for the elementary 
ones. Many metatheoretic propositions have a vague character and 
require analysis. Such analysis can be given only by considering the 
specific kinds of metapropositions concerned. However, supposing 
this analysis made, we can divide metatheoretic proofs into two kinds, 
constructive and non-constructive. A constructive proof is one which, 
like the above proof of the substitution theorem, exhibits a process 
which can actually be carried through in any particular case arising 
under the hypotheses. For such a proof the criterion of rigor is re­
duced in the last analysis to that for the elementary propositions, and 
it has the same objective character. On the other hand the non-con­
structive proof depends on idealistic or other extraneous assumptions; 
and therefore we cannot regard them as purely formal. 

An especially important class of metatheorems is constituted by 
certain theorems of incompleteness which have played a prominent 
role in recent years. These started with the Löwenheim29 theorem of 
1915, which was later refined by Skolem.30 The upshot of these theo­
rems was that any system of a certain kind would have an enumerable 
model in a sense which cannot be gone into here ; since these systems 
have also interpretations which are non-enumerable, it follows that 
the interpretation cannot be unique as to structure. This, of course, 
is a non-constructive theorem. Sixteen years later Gödel31 proved con­
structively that in systems strong enough for the usual mathematical 
purposes there are elementary propositions such that, if the system 
is consistent, neither these propositions nor their formal negatives 
within the system can be proved. A similar theorem of Kleene and 
Rosser, published in 1935,32 shows that a formal system cannot have 

29 L. Löwenheim, Über Möglichkeiten im Relativkalkul, Mathematische Annalen, 
vol. 76 (1915), pp. 447-470. 

30 Th. Skolem, Logisch-kombinatorische Untersuchungen über die Erfiillbarkeit oder 
Beweisbarkeit mathematischer Satze nebst einem Théorème über dichte Mengen, Videns-
kapsselskapet Skrifter, class I, 1920, no. 6. 

31 K. Gödel, Über formal unentscheidbare Satze der Principia Mathematica und ver-
wandter Système, Monatshefte für Mathematik und Physik, vol. 38, pp. 173-198. 
For expositions of this famous theorem see also D. Hubert and P. Bernays, Grundlagen 
der Mathematik, vol. 2, 1939, pp. 269-289, also J. B. Rosser, An informal exposition 
of proofs of G Oder s theorem and Church's theorem, Journal of Symbolic Logic, vol. 4 
(1939), pp. 53-60. 

32 S. C. Kleene and J. B. Rosser, The inconsistency of certain formal logics, Annals of 
Mathematics, (2), vol. 36 (1935), pp. 630-636. A revised proof of this theorem is con-
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a kind of completeness as to term-formation and at the same time be 
capable of formalizing—in a sense which cannot be explained here—• 
its own deductive processes. 

7. Definition of mathematics. We are now in a position to discuss 
the formalist definition of mathematics. In this connection the incom­
pleteness theorems just discussed have important consequences for 
the formalist conception of mathematics. Indeed they show that it 
is not feasible to consider mathematics as the development of a single 
formal system. There are other reasons, too, which support such a 
view; for the arbitrary nature of the definitions constituting the prim­
itive frame of a formal system shows that, in principle at least, all 
formal systems stand on a par.33 The essence of mathematics lies, 
therefore, not in any particular kind of formal system, but in formal 
structure as such. Mathematics, then, should be defined as the science 
of f or mal systems in general; it should include all propositions elemen­
tary or metatheoretic, relating to one system or several, or to formal 
systems in general, so long as their criteria of truth depend on formal 
considerations alone. 

This last proviso would exclude from mathematics proper all theo­
rems depending on non-constructive proofs. This does not mean that 
these theorems are without mathematical interest. They are simply 
mixtures of mathematics and something else. As the example of the 
Löwenheim-Skolem theorem shows, these theorems are often of great 
significance for us; moreover they may lead to purely mathematical 
propositions at a higher level of formalization. 

Mathematics, so conceived, has the following characteristics. First, 
it includes everything we know as mathematics. Classical analysis, 
for example, although not constructive when regarded as a meta-
theory of arithmetic, nevertheless can be embodied in a more inclu­
sive formal system.34 Second, mathematics is a science, in that it 
consists of propositions—not formulas but real propositions, with a 
definite criterion of truth. This criterion of truth is capable of fully 

tained in my paper The paradox of Kleene and Rosser (not yet published), and a con­
siderable simplification in a paper, under the same title as that of Kleene and Rosser, 
which is now in preparation. 

33 This statement is not to be confused with the naive view that mathematics 
consists of more or less autonomous postulate systems. For if we could formulate a 
completely adequate logic, then these postulates could be added to the hypotheses of 
the theorems, and so all the postulate systems could be subsumed under one master-
system—logic. But the point is that we can not have any such logic. 

34 Such formal systems, insofar as they are known at present, are not wholly satis­
factory. Cf. Church's appendix to F. Gonseth, Philosophie Mathématique, Paris, 1940. 
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objective verification or proof—the primary standard of rigor for such 
a proof being the definition of derivability of an elementary proposi­
tion. On the other hand the gist of mathematics is that we make 
definitions by recursion, and then draw particular consequences by 
applying the definitions and general consequences by mathematical 
induction. There is thus a certain amount of justice in the view that 
mathematical theorems are consequences of definitions; but since the 
definitions are recursive, mathematics does not have the trivial char­
acter which that seems to imply. Likewise there is justice in the view 
that mathematical induction is a process of cardinal importance. 
However, it is not a mysterious power of the human mind, as Poincaré 
seemed to think, but is simply a corollary of recursive definitions; 
for if we demonstrate by mathematical induction that all members 
of a recursively defined class have a certain property, that demon­
stration is constructively valid because by definition every member of 
the class can be reached by the inductive process. 

At an earlier stage I stated that most of the positive criticisms of 
the intuitionists find their justification in modern formalism. We have 
seen that this is so for the Kronecker demand for constructivity ; in­
deed we are more stringent in this particular than the intuitionists 
themselves.35 In the preceding paragraph we have also seen that their 
emphasis on mathematical induction has some justification. As for the 
law of excluded middle, it is necessary first to explain what it means. 
If we interpret it as a metaproposition concerning a formal system 5, 
to the effect that every elementary proposition of S is true or false, 
then we need to know the meaning of 'false' (not to mention 'or'). 
Now although we know what it means to verify an elementary propo­
sition of S, yet we have no constructive definition of what it means to 
say it is false. We might define constructive falsity in any one of a 
number of different ways; but for any of the suggested definitions the 
law of excluded middle holds only if the system has a relatively trivial 
character.36 

There is not time to go further with this. We can say, however, 
that it is useless to deny that intuition is involved in mathematics— 
if one defines intuition properly the statement is a tautology. How­
ever, we do not have to postulate a metaphysical character for it; 

35 This is shown by Gödel's reduction of classical arithmetic to that of intuitionism 
(Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines mathematischen 
Kolloquiums, vol. 4 (1932), pp. 34-38). The consistency of classical arithmetic can­
not be proved constructively in any such simple manner. 

36 These matters I plan to discuss more fully in a forthcoming paper Some proper-
ties of formal deducibility. 
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indeed to many of us it seems that this intuition is an empirical, 
linguistic phenomenon. On the other hand if we subtract from intui-
tionism its metaphysics, the remaining differences between it and 
formalism are relatively superficial as regards mathematical rigor. 
The main point is that the intuitionist prefers to confine attention 
to certain special types of formal systems. This leads to considera­
tions, going beyond the definition of rigor, to which we must now de­
vote some attention. 

8. Acceptability. It is obvious that we are not interested in all for­
mal systems. Those considerations which lead us to choose one system 
rather than another need to be distinguished from those relating to 
the truth of propositions concerning a formal system once chosen. 
To make this distinction I shall call that property of a formal system 
which leads us to adopt it for consideration its acceptability. This is 
evidently a quasi-truth concept which applies to a system as a whole. 

In strictness acceptability is irrelevant to the problem of mathe­
matical rigor. A proof of a proposition relating to a formal system is 
rigorous if and only if it satisfies certain objective criteria which are 
independent of acceptability. But it is necessary to give a brief ac­
count of acceptability for two reasons: first, because there has been 
some confusion in regard to it, and second because it sheds some light 
on the significance of mathematical rigor from the point of view of 
science. 

The first point is that acceptability is relative to a purpose. It usu­
ally means that we are interested in some interpretation of the formal 
system ; and the validity of the interpretation in relation to the sub­
ject matter is the prime consideration. Without statement of the pur­
pose any discussion of acceptability is futile. Moreover the various 
schools of thought are not necessarily in conflict with one another. 
There is no one absolutely acceptable system ; for different purposes 
entirely different systems may be acceptable. 

Again if the purpose is an empirical one, as it is in physics, the ques­
tion of acceptability is empirical also. Neither intuitive evidence, 
which is stressed by the intuitionists, nor demonstrable consistency, 
which is insisted on by Hubert, is of more than secondary importance. 
From this point of view I think we must agree that, at the present 
state of our knowledge, some system of classical analysis is accepta­
ble, however meaningless it may be to the intuitionists, and however 
far we may be from a formulation with a consistency proof. Of course 
if an inconsistency should be found, we should have to modify the 
system; but at the present time the acceptability of analysis is an 
empirical fact which requires no justification. 
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It is perhaps worth mentioning that the demand for intuitive evi­
dence and the demand for consistency proof amount, in the last 
analysis, to nearly the same thing. For a thoroughly satisfactory con­
sistency proof would exhibit a process whereby, given a classical proof 
with an intuitionîstically significant conclusion, we could transform 
it into an intuitionistic proof of the same conclusion. Ackermann^ re­
cent proof of the consistency of arithmetic37 does just this for a cer­
tain class of propositions. The proof is accomplished by a series of 
total replacements ("Gesamtersetzungen"); if the conclusion of the 
original proof is a particular numerical formula, the last total replace­
ment gives an intuitive proof of the same formula. A complete solu­
tion of the consistency problem for analysis would show that any 
classical proof of a proposition with a direct intuitive meaning could 
be transformed into a purely constructive proof. In view of the 
Löwenheim-Skolem theorem there is reasonable doubt as to the pos­
sibility of such a transformation. And even if we succeed in finding it, 
it is not improbable that we shall always have uses for systems whose 
consistency is unknown. 

The upshot of this is that we should cultivate a tolerant attitude 
in matters of acceptability.38 Acceptability is not a question of right 
and wrong but of choice of subject matter. Such a choice should be 
free; and some difference of opinion is not only allowable but desir­
able. As mathematicians we should know to what sorts of system our 
theorems—if formalized—belong; but to exclude systems which fail 
to satisfy this or that criterion of acceptability is pedantry. 

From the point of view of formalism, then, the question of truth 
of a naive mathematical proposition can be split into two parts. The 
first is the discovery of the formal system to which the proposition 
is to be referred, and the proof of the corresponding formal proposi­
tion ; this is the problem of mathematical rigor, and we have seen that 
it has an objective character. The second is the acceptability of that 
system for the purpose in hand ; this is a problem of applied mathe­
matics. 

PENNSYLVANIA STATE COLLEGE 

37 W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Mathematische 
Annalen, vol. 117 (1940), pp. 162-194. 

38 Cf. Carnap's "Principle of Tolerance" (Logical Syntax, p. 51 fï.); also Weyl, H., 
Die heutige Erkenntnislage in der Mathematik, Sonderdrucke des Symposion, vol. 3, 
Erlangen, 1926, pp. 31 ff. 


