
AN UNSYMMETRIC FUBINI THEOREM1 

R. H. CAMERON AND W. T. MARTIN 

Because of the great variety of ways in which repeated Stieltjes in­
tegrals may occur, the ordinary Fubini theorem for Lebesgue integrals 
has more than one analogue in Lebesgue-Stieltjes (Radon) integrals.2 

One of these (the symmetric one) is well known.3 However, there is 
another form which is not symmetric, and its proof does not seem to 
be in the literature, although it is known to many writers, in special 
cases at least.4 This form does not appear to be immediately derivable 
from the symmetric form, and since it is of interest in various connec­
tions, it seems worthwhile to give an explicit statement and proof. 
We do not follow the usual procedure of beginning with finite limits 
and then allowing the limits to become infinite because the passage to 
infinity seems to present difficulties of the same order as the direct 
proof of the final result itself. The immediate use of infinite limits is 
made possible by the fact that the symmetric Fubini theorem has al­
ready been proved with infinite limits. 

THEOREM. Let k(x) be a function of bounded variation on every finite 
interval. Let p{x, u) be Borel measurable in (x, u);for almost all x with 
respect to k(x) let it be of bounded variation in u over every finite 
u-interval. Denote by V(x, u) the variation* V(x, u)=f%Xo\dvp(x, v)\. 
Assume that fl* V(x, u) \ dk(x) \ exists (is finite) for aW u. Let s(u) be 
Borel measurable on ( — <*>, oo ). Then the existence (finiteness) of either 

f CO *% 00 

(1) I I s(u) | du I V(x, u) | dk(x) | 

1 Presented to the Society, February 24, 1940. 
2 The integrals which occur in this paper are understood to be Lebesgue-Stieltjes 

(Radon) integrals. See, for example, Saks, Theory of the Integral, 2d revised edition, 
Warsaw-Lemberg, 1937, pp. 19 and 67. We note that the familiar principles of mono­
tone and dominated convergence in the Lebesgue theory are also valid in this theory; 
see pages 28 and 29. In this paper we shall not admit ± oo as members of our num­
ber system; that is, existence implies finiteness. 

3 Saks, loc. cit., p . 81. 
4 See for instance, N. Wiener and H. R. Pitt, On absolutely convergent Fourier-

Stieltjes transforms, Duke Mathematical Journal, vol. 4 (1938), pp. 420-436. The 
reader will note that a form of this theorem was used in passing from line 13 to line 14 
on page 421. 

5 For negative u we understand that V(x, u) = —fu,Q|dvp(x, v)\. Of course V is 
strictly a variation only for positive u. 

6 Clearly it would be sufficient to require that the integral be finite for u ranging 
over some sequence* having ± oo as limit points. 
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or 

ƒ
00 /% 00 

I dk(x) | I | s{u) I . I dup(x, u) I 
- 0 0 ^ - 0 0 

implies the existence of the other, their equality, and the existence and 
equality of the following integrals 

ƒ 00 S% 00 /% 00 (% 00 

s(u)du I jK#, u)dk(x) = I d&(x) I s(u)dup(x, u), 
_oo ^ —oo ^ — oo *^ —oo 

We shall first prove this theorem under the following additional as­
sumptions which we shall later successively remove : 

(A) s(u) is a polygonal function (that is, a continuous function 
whose second derivative exists and is zero except at a finite number of 
points), 

(B) s(u) is bounded arid vanishes identically outside a finite inter­
val, 

(C) s(u) is non-negative, k(x) is monotonie increasing and p(x, u) 
is monotonie increasing and right continuous in u and p(x, 0) = 0 . 

Clearly the additional hypotheses (B) and (C) imply the existence 
of (1). Also they imply the existence of (2), as one sees in the following 
manner. Let n be such that s{u) = 0 when \u\ >n — \ and such that 
s{u) is everywhere less than or equal to n. Then since V(x, u) = />(#, u) 
by (C) we see that 

/

oo •» n 

s(u)dup(x, u) S n I dup(xy u) = ^[F(o;, n) — V(x, — n)]. 
-oo J -n 

Also 

ƒ 00 

V(x, u)dk(x) 
- o o 

exists by hypothesis. Hence 

/

oo •» oo /% oo 

dk(x) I s(u)dup(x} u) S n I dk(x)[V(x, n) — V(x, — n)]; 
- 0 0 * - 0 0 J - 0 0 

that is, (2) also exists. 
Thus under the additional hypotheses (B) and (C) we need only 

show the equality of (1) and (2) since obviously the right and left 
members of (3) are equal to (1) and (2) respectively. In order to show 
the equality of (1) and (2) under (A), (B) and (C) we integrate by 
parts and use the fact that s vanishes at — n and at n. Thus 
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/

n / • oo /» n r* oo 

s(u)du I ^(x, u)dk(x) = — I ds(w) I ^>(#, u)dk(x). 
-n J -oo J -n J -oo 

By the symmetric Fubini theorem, we obtain 

/

W • » 00 y» 00 /% n 

ds{u) I ^(x, u)dk(x) = I d&(#) I ^(#, u)ds(u). 
— n J — c c J -oo ^ - n 

Integrating the inner integral of the right member of (7) by parts, 
we have 

/

oo /» n f* oo •• w 

d&(#) I P(x> u)ds(u) = — I dk(x) I s(u)dup(x, u) 
-oo «J - n J „oo J _ w 

and this with (6) and (7) establishes the equality of (1) and (2) and 
thus in view of the preceding remarks proves the theorem under the 
additional assumptions (A), (B) and (C). 

Now since every bounded Borel measurable function is a repeated 
limit of continuous (and even of polygonal) functions7 we shall show 
by the repeated use of the principle of dominated convergence that 
the theorem still holds when we drop (A) and keep only the addi­
tional hypotheses (B) and (C). As we have noted, for this purpose 
it is again only necessary to prove the equality of (1) and (2). 
For purposes of induction let us assume that s*(u) =limj_>00 Sj(u) 
(— oo <u< oo) where S\(u), S2(u), • • • is a sequence of non-negative 
functions each of which is Borel measurable and vanishes when 
\u\ >n — \ and each of which is everywhere less than or equal to n. 
Assuming that the conclusion of the theorem holds for each Sj(u) when 
p and k satisfy (C), we shall show that it also holds for the limit func­
tion s*(u). By bounded convergence 

ƒ
71 X» 00 /% 1% • » 00 

Sj(u)du I p(x, u)dk(x) = I s*(u)du I p{x, u)dk(x); 
-n J -oo J —n J -oo 

and since (4) holds for each Sj{u) it follows by dominated convergence 
that 

/

oo s* n (* oo •» n 

dk(x) I Sj(u)dup(x, u) = I dk(x) lim I Sj(u)dup(%, u) 
-oo J -n J -oo J-*00 * -n 

/

oo /• n 

dk(x) I s*(u)dup(x, u). 
—oo v — n 

7 See, for example, de la Vallée Poussin, Intégrales de Lebesgue (Borel Monograph), 
1916, pp. 36, 37. 
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Thus if the theorem holds under (B) and (C) for one Baire class it 
holds under (B) and (C) for the next; and hence the theorem holds 
under (B) and (C) for all Borel measurable functions. 

In order to remove (B) (retaining only (C)) let 

(s(u) if I u I S M — 1 and s(u) ^ n. 
(9) sn(u) = < 

{ 0 otherwise. 

Then since sn(u) satisfies (B) and (C), 

/

oo /% oo /% oo /% oo 

sn{u)du I p(x, u)dk(x) = I dk(x) I sn(u)dup(x, u). 
-oo * — oo * — oo J — oo 

Since either (1) or (2) exists, both these expressions are bounded 
(in n). By monotone convergence 

ƒ 00 • » 00 /% 00 X» 00 

sn(u)du I p(x, u)dk(x) = I s(u)du I £(#, u)dk(x), 
- 0 0 * ^ - 0 0 • ' - O O « ^ - 0 0 

/

oo •» oo •» oo •» oo 

d£(#) I sn(u)dup(x, u) = | dk(x) lim I sn(u)dup(xy u) 
-oo *^ —oo ^ —oo tt-+oo */ _ o o 

/

oo /loo 

d&(#) I s(u)dup(x, u). 
—oo ^ - o o 

Thus the theorem holds under (C). 
Finally, we can dispense with (C) and assume merely the original 

hypotheses of the theorem. To show this let 
Si(u) = max {(— l)*s(w), 0}, i = 0, 1, 

(11) ki(x)=—lf* | d é ( ö | + ( - l ) * É ( * + 0 ) j , * = 0, 1, 

fr(*, «0 = i{F(*,«) + ( - i)'l>(*.« + o) - *(*. o + <))]}, 
f = 0, 1. 

Obviously all these functions are Borel measurable and satisfy (C). 
We first show that the existence of (1) or (2) for s, p and k implies 
the existence of (1) or (2) respectively for s^ p,-, ki. Since we always 
have 

ƒ 00 (% 00 

I *(*) I df(x) ^ I | $(x) | dg(x) 
-00 J - 0 0 

when ƒ (x) —g(x) is non-decreasing, and 
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ƒ
00 /•» 00 

<t»{x) I df(x) I ^ I 0 0 ) I df(x) I 
-00 J —00 

when 0(x) ^ d^x), it follows that 

/

oo /% oo /» oo /» oo 

| $(«) | dw I V(x, u) I d&(x) I ^ I Si(u)du I F(x, w) | d£(x) | 
-oo J - o o ^ - o o *^ - o o 

ƒ 00 • » 00 

Si(u)du I ^y(x, w) I d&(a;) | 
- 0 0 ^ - 0 0 

/

oo •» oo 

Si{u)du I #ƒ(#, u)dki(x) 
- o o ^ - o o 

and 

ƒ 00 • » 00 / » 00 ƒ » 00 

I d&(#) I I I s(u) | | dup(x, u)\ *z \ dki(x) J I s(u) I I ̂ M^(x, w) | 
-oo J - o o ^ - o o «J - o o 

ƒ 00 • » 00 

dki(x) I 5»(w) | dM^>(x, u) | 
- o o ^ - o o 

ƒ 00 / » 00 

d*j(ff) I Si(u)dupj(x, u). 
- o o J - o o 

Thus s,-, pj, ki satisfy the hypotheses of the theorem, as well as (C), 
and hence 

/

OO / » 00 

Si{u)du I p,{x, u)dki(x) 
-oo * - o o 

ƒ 00 / » 00 

d&zO) I Si(u)dup,{x, u). 
- o o «J - o o 

Adding these eight equations yields (3), and hence completes the 
proof of the theorem. 

T H E MASSACHUSETTS INSTITUTE OF TECHNOLOGY 


