
NOTE ON CERTAIN ORTHOGONAL POLYNOMIALS1 

DUNHAM JACKSON 

1. Introduction. A well known theorem2 states that if Kn(x, t) 
—y^1Qpk{x)pk{t) is the kernel associated with a system of orthonormal 
polynomials on an interval (a, b) with weight function p(t), and if XQ 
is a real number not belonging to the open interval (a, b), the function 
Kn(x, t) is orthogonal to every polynomial of lower degree with re­
spect to | /--#o|p(0 as weight function. This result is to be extended 
below to orthogonal trigonometric sums, and more generally to other 
orthogonal polynomials in two real variables on an algebraic curve.3 

The fact that a single polynomial of the nth degree in the original 
formulation is replaced by two or more sums or polynomials of like 
degree in the generalized orthogonal systems imparts to the extension 
some features of novelty. Certain other generalizations are briefly 
mentioned also. 

2. Trigonometric sums. Let U0(x), Ui(x), Vi(x), • • • be orthonor­
mal trigonometric sums for weight p(x), and let 

Kn (*, s) = UQ(X)UQ(S) + Ui(x)Ui(s) + • • • + Un(x)Un(s) 

+ ViixW^s) + • • • + Vn(x)Vn(s). 

For definiteness it may be assumed that Uk(x) contains no term in 
sin kx, while Vk{x) contains sin kx with a nonvanishing coefficient; the 
function Kn(x, s) would be unchanged if Uk, Vk were replaced by any 
equivalent pair of sums of the &th order. If Tn(x) is any trigonometric 
sum of the nth order, 

ƒ p(s)Kn(x, s)Tn(s)ds = Tn(x). 

Suppose p(x) = 0 throughout an interval (a, ]8). Let Xi, x2 be any two 
distinct points of (a, ]8). Let rn_i(#) be an arbitrary trigonometric 
sum of order n — 1 at most, and let sin \{x — X\) sin \(x — x^)rn~\{x) 
= Tn(x) ; the product 

sin %(x — xx) s in | (x — x2) = | cos§(#i — #2) — i cos [x — %(x\ + x2)] 

1 Presented to the Society, December 29, 1939. 
2 See, e.g., G. Szegö, Orthogonal Polynomials, American Mathematical Society 

Colloquium Publications, vol. 23, New York, 1939, p. 39. 
3 See D. Jackson, Orthogonal polynomials on plane curves, Duke Mathematical 

Journal, vol. 3 (1937), pp. 228-236. 
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is a trigonometric sum of the first order. Then 

J p(s)Kn(x, s) sin %(s — Xi) sin %(s — X2)Tn-i(s)ds 

= sin J(x — xi) sin J(x — #2)TW_I(#). 

The right-hand member vanishes for x = xi and for x = X2\ that is to 
say, Kn(xiy s) and Kn(x2, s) as trigonometric sums of the nth order in s 
are orthogonal to every sum TW_I(S) of lower order, with respect to 
sin |(s—Xi) sin %{s — X2)p{s) as weight function. This weight function is 
of constant sign, since p(s) vanishes throughout the interval (#1, #2). 

The sums Kn(xi, s) and Kn(x2, s) are linearly independent. An iden­
tity Kn(x2, s) = CKn(xi, s) would require in particular that UQ(X2) 

= CUO(XI), Ui(x2) = CUi(xi), VI(X2) = CVI(XI), that is, that C = l , 
cos X2 = cos xi, sin X2 = sin x\. 

In the limiting case #2 = xi, 

/
p(s)Kn(x, s) sin2 | ( s — xi)rn-i(s)ds = sin2 §(# — Xi)rn-i(x) 

and by differentiation with respect to x under the sign of integration 

ƒ. p(s)Knx(x, s) sin2 §(s — xi)rn-i(s)ds 

= sin | (x — xi) cos J(# — #i)rn_i(#) + sin2 %(x — ^i)rn-i(^), 

where Knx(x, s) means (d/dx)Kn(x, s). Both right-hand members van­
ish for x = Xi\ Kn(xi, s) and Knx(xi, s) as trigonometric sums of the 
nth order in 5 are orthogonal to every sum of lower order for weight 
sin2 %(s — xi)p(s). Here no assumption with regard to vanishing of p 
is required. It is obvious that Kn and Knx are linearly independent, 
for one contains a constant term and the other does not. 

Vanishing of p is again unnecessary if x\ and X2 are allowed to be 
complex. Let x\ = y-\-ib, X2 = y — i5, with 7 and 5 real, 

sin \{x — Xi) sin \{x — x2) = J cos id — ^ cos (x — 7) 

= J cosh ô — J cos (x — 7). 

Since each member of (1) represents a trigonometric sum in x, and 
they are identical for real values of x, they are equal also when x is 
complex. For x = xi the right-hand member is zero, and the real and 
pure imaginary parts of the expression on the left must vanish sepa­
rately. The same result is obtained by setting x = X2. The real and pure 
imaginary parts of Kn(xi, s) for real 5 (or of its conjugate Kn(x2, s)) are 
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orthogonal to every trigonometric sum of lower order in 5 with respect 
to the non-negative weight function [J cosh 5 — \ cos (s— y)]p(s). 
These real and pure imaginary components, being linearly independ­
ent combinations of the linearly independent functions Kn(xi, s) and 
Kn(x2, s), are themselves linearly independent trigonometric sums of 
the nth order in s. 

3. Polynomials on an algebraic curve. Orthogonal trigonometric 
sums can be regarded as a special instance of orthogonal polynomials 
in two real variables on an algebraic curve, the curve in this case being 
a circle (or, without essentially greater generality, an ellipse). Con­
siderations analogous to those outlined above apply to the more gen­
eral problem. As an illustration the reasoning will be formulated for a 
curve of the third degree. It will be immediately apparent that the 
same type of argument can be applied to curves of higher degree, if 
exceptional cases are avoided, or, on the other hand, to an alternative 
treatment of orthogonal polynomials on a circle, or to orthogonal 
polynomials on hyperbolic arcs. (Orthogonal polynomials on a parab­
ola are essentially orthogonal polynomials in a single variable.) 

Let C be a curve of the third degree. Let p(x, y) be a non-negative 
weight function defined on C, and, for simplicity, vanishing identi­
cally except on an arc or arcs of finite extent. Let poi(x, y), pn(x, y), 
pi2(x, y), and, for n^2, pni(x, y), pn<2,(x, y), pnz(x, y) denote the mem­
bers öf a corresponding system of orthonormal polynomials on C, each 
polynomial being of total degree indicated by its first subscript. Let 

Kn(x, y, u, v) = X pkj(%, y)pkj(u, v), 

the summation being extended over all the relevant pairs of sub­
scripts. As in the special case of trigonometric sums, the function Kn 

is completely determinate when the points (x, y) and (u, v) are on the 
curve C in their respective planes, although the individual polyno­
mials of any specified degree in the system admit orthogonal trans­
formation among themselves. 

Let ax+by-\-c = 0 be the equation of a line intersecting C in three 
distinct points (xi, yi), (x2, 3/2)1 (#3, 3/3), and so situated that the do­
main of orthogonality of the polynomials is all on one side of it, that 
is, so that ax+by-\-c is of constant sign where p^O. The intersections 
may be real, or two of them may be conjugate complex; it is under­
stood that the coefficients a, b, c, as well as those in the equation 
of C, are real. It is to be understood further, if C is degenerate, that 
the domain of orthogonality includes a portion of positive measure 
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(with respect to arc length as variable of integration) on each of the 
loci defined by the vanishing of an irreducible factor in the equation 
of C. 

If Pn(x> y) is any polynomial of the nth or lower degree, then for 
(x, y) on C 

/
p(w, v)Kn(x, y, u} v)Pn(u, v)ds = Pn(xf y)9 

c 

where 5 denotes arc length on the curve C in the (w, v) plane. While 
the identity holds in general only on the curve, it is valid at all points 
of the curve, not merely where p?^0. If 7Tn_i(x, y) is an arbitrary poly­
nomial of degree n — \ at most, and Pn(x, y) = (ax + by+C)TTT^.I(X1 y), 
the identity states that 

I p(̂ > v)Kn(x, yy u, v)(au + bv + c)wn-i(u, v)ds 
(2) J c 

= (ax + by + c)7iv-i(x, y). 

Since the points (xv, yv), v = l, 2, 3, lie on the curve and at the same 
time on the line ax+by+c = 0, the relation holds with the right-hand 
member equal to zero if any one of these pairs of values is substituted 
for (x, y). The functions Kn(xv, yvi u, v) as polynomials in u and v 
are orthogonal to every polynomial of lower degree for weight 
(au-\-bv-\-c)p(u, v). 

The three polynomials Kn(xv, yv, u, v) are linearly independent on C 
if n^2. For, as the polynomials pkj(u, v) are linearly independ­
ent on the curve, a relation of linear dependence of the form 
y^vCpKn(xvt yv, u, v) = 0 would imply corresponding relations of linear 
dependence among the quantities pkj(xy, y„) as coefficients in the K's. 
In particular, the first six of the equations ^2vCvpkj(xv1 yv) would re­
quire that 

C1 + C2 + Cs = 0, 

CiXi + C2X2 + CzXz = 0, 

Ciyi + C2y2 + Czyz = 0, 
2 2 2 

C1X1 + C2x2 + C3X3 = 0, 

CiXiyi + C2X2y2 + C3X3J3 = 0, 
2 2 2 

Ciyi + C2y2 + Czyz = 0. 

The first, second, and fourth of these equations are possible with Cs 
not all zero only if two of the x's are equal, and the first, third, and 



100 DUNHAM JACKSON [February 

sixth only if two of the y's are equal. But this is inconsistent with the 
hypothesis that (xi, yi), (x2, 3^), (#3, 3 )̂ are three distinct points on 
a straight line. Similarly, though more simply, any two of the poly­
nomials Ki(xv, y„, u, v) are linearly independent on C. The expressions 
Kn(xvt yP1 u, v) give the complete system of orthogonal polynomials 
corresponding to the weight function (ax+by+c)p(x, y). If two of the 
points (xvy yv) are conjugate complex, real polynomials for the orthog­
onal system can be obtained by taking the real and pure imaginary 
parts of the corresponding K's. 

Similar reasoning is clearly effective for a curve of the Nth degree 
with a straight line meeting it in N distinct points. For a treatment 
of certain cases of coincident points of intersection the discussion will 
be limited to the curve of the third degree. 

Suppose now that the line ax+by+c — 0, instead of meeting the 
curve in three distinct points, is tangent to it at an ordinary point 
(ffii 3>i), and intersects it at a point (x2, 3̂ 2) distinct from (xi, yi). I t is 
still assumed that the part of the curve on which p^O is all on one 
side of the line, that is, that ax+by+c is of constant sign there. At 
least one of the coefficients a, b is different from zero; without loss 
of generality it may be supposed that &^0, that is, that the line 
is not parallel to the y-axis. In the neighborhood of the point (xi, yi), 
y is a single-valued function of x on the curve, with a derivative whose 
value reduces at (xi, yi) to ( — a/b), the slope of the tangent line. In 
this neighborhood on C, by differentiation of (2), 

/
p(u, v)Knx(x, y, u, v)(au + bv + c)wn-.i(u, v)ds 

c 
d 

= — [(ax + by + c)7rn_iO, y)\ 
ax 

d 
= (ax + by + c) — 7rn_i(x, y) + (a + by')wn~i(x, y), 

dx 

where Knx(x, y, u, v) means the total derivative of Kn with respect 
to x, equal to dKn/dx+y'dKn/dy. At (xi, yi) both ax+by+c and 
a+by' vanish. The function Knx(xi, yi, u, v), which is still a polyno­
mial as regards its dependence on u and v, is orthogonal to irn -\(u, v) 
for weight (au+bv+c)p(u, v). 

There have been obtained then for n^2 three polynomials 
Kn(xi, 3>i, u, v), Knx(xi, 3>i, u, v), Kn(x2, 3̂ 2, u, v), each possessing the 
property of orthogonality. These are once more linearly independent 
on the curve. Without effect on the form of Kn, and so without any 
impairment of generality, it may be assumed that the first six poly-
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nomials in the orthogonal system are specifically those obtained by 
applying the Schmidt process to the monomials 1, xt y, #2, xy, y2

y taken 
in that order. Then pn(x, y) does not involve y, and p2i(x, y) involves 
neither xy nor y2. Suppose there were an identity of the form 

dKn(xh yh u, v) + C2Knx(xu yh u, v) + CzKn(x2, y2y u, v) = 0 

with C's not all zero. Then 

Cipk]{xh yi) + C2pkj(xh yi) + Cdpkj(x2, y2) = 0 

for each pair of indices (&, j) in which kl^n, the accent indicating 
total differentiation with respect to x. The equations for the first four 
pairs of indices may be simplified to the form 

0! + ^ = 0, 
CxXi + C2 + Czx2 = 0, 

Ciji — C2a/b + Czy2 = 0, 
2 2 

CiXi + 2C2xi + C3X2 = 0. 

The first, second, and fourth of these equations require that #i = X2, 
which is impossible under the hypothesis that (xi, yi) and (x2, y2) are 
distinct and b^O. It is immediately apparent that any two of the 
three K's are linearly independent for n — 1. So the i£'s give the com­
plete orthogonal system for weight (ax+by+c)p(xy y). 

Finally, let the line meet the curve at a double point (xi, yi) at 
which there are distinct tangents with finite slopes, and at another 
point (x2, y2). It is assumed, as always, that ax+by+c is of constant 
sign where p does not vanish. Let Ki(u, v) and K2(u, v) be the total 
derivatives Knx(xu yu u, v) calculated respectively for the two 
branches of the curve through (xi, yi) ; let the corresponding slopes 
be Xi and X2. Then 

/
p(u, v)Kv(u, v)(au + bv + c)wn-i(uf v)ds 

c 

= (a + &\„)7rn_iOi, ^1), v = 1, 2. 

It is seen that (a+b\2)Ki{u, v) — (a+b\i)K2(u, v) is orthogonal to 
wn-.i(u, v) for the composite weight function. This polynomial and the 
two polynomials Kn(xi, yi, u, v), Kn(x2, y2l u, v) are found to be linearly 
independent on C for n ^ 2, and once more a complete orthogonal sys­
tem is obtained. 

These illustrations will be allowed to suffice for the case of multiple 
intersections. 
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4. Other cases. The corresponding theory for a non-algebraic curve 
is complicated by the fact that the number of polynomials of the nth 
degree in the orthogonal system increases with n, but is compen-
satingly simplified by the observation that the representation corre­
sponding to (2) holds for all values of x and y, so that (except for the 
assumption that the domain of orthogonality is all on one side of the 
line) the points where the straight line meets the curve are no longer a 
matter of special concern. If (xv, yv) are any n+1 distinct points on 
the line, independent polynomials of the nth degree orthogonal to 
every polynomial of lower degree with respect to the composite 
weight function are given by Kn(xvi yvy u, v). 

A similar conclusion holds for orthogonality on a two-dimensional 
region. 

T H E UNIVERSITY OF MINNESOTA 

NOTE ON AN INEQUALITY OF STEINER1 

T. RADÓ AND P. REICHELDERFER 

Let Q denote the unit square 0 ̂ x, y S 1. If f(x, y) be any function 
defined and continuous on Q, the relation z=f(x, y) yields a continu­
ous surface defined over Q. The Lebesgue area2 of this surface will be 
denoted by L(f). Let z =fi(x, y), JS=/2(X, y) be two continuous surfaces 
defined over Q; then clearly z = [fi(x, y)Jrfi{x1 y)]/2 is a continuous 
surface defined over Q. The inequality of Steiner* states that 
£ ( [ / i + / 2 ] / 2 ) ^ [L(/ i )+Z(/ 2)] /2 . McShane4 obtained interesting and 
important results concerning the situation where the sign of equality 
holds in this relation. In this note we improve his results and, in a 
sense, give them a final form. 

In order to emphasize and to clarify what is significant and inter­
esting in the results of McShane and in our improvements thereon, 
we remind our reader of a few facts concerning the Lebesgue area.5 

Given a continuous surface z=f(xt y) defined over Q; if L(f) is 
finite then the partial derivatives fx and fy exist almost everywhere 
in Q, the integral ffQ[l+fl+fl]ll2dxdy exists, and the relation 

1 Presented to the Society, April 13, 1940. 
2 See S. Saks, Theory of the Integral, Warsaw and Lwów, 1937, chap. 5, for the 

facts used in this paper concerning the Lebesgue area. 
3 E. J. McShane, On a certain inequality of Steiner, Annals of Mathematics, (2), 

vol. 33 (1932), pp. 125-138. 
4 Loc. cit.3 

6 Cf.2 


