A REMARK ON THE SUM AND THE INTERSECTION
OF TWO NORMAL IDEALS IN AN ALGEBRA

TADASI NAKAYAMA

Let F be a quotient field of a commutative domain of integrity o
in which the usual arithmetic holds.! Consider an algebra U with a
unit element over F. Let 31, 8, s, 34 be four arbitrary maximal
orders in A and a, b, ¢ be three arbitrary normal ideals. We prove the
following theorems.

THEOREM 1. If 31N 3=3:n Su [or (S1, So) = (S, Su) ], then either
1=, Ja=Ja07 J1=34, Fo=3s.

THEOREM 2. Both the left and the right orders of (31, Je) are F1N Jo.
Also $1N S E s if and only if (31, Fe) 2 Js; if this is the case the dis-
tance ideal v of s to I is divisible by the distance ideal® ds1 of Js 2o Iy

THEOREM 3. The left, say, order o of the intersection anb [the sum
(a, )] is an intersection of two suitable maximal orders.

More precisely, if r and 8 are normal ideals such that b=rta8 in
the sense of proper multiplication and if t is the smallest two-sided
ideal of the right order of a which divides 8 while t’ is the largest two-
sided ideal of the same maximal order which is divisible by 8, then o
is the intersection of the left orders of the two normal ideals an rat
and anrat’ [(a, rat) and (a, rat’) ]2 The left order of aN b coincides
with the right order of (a~', b—1).

THEOREM 4. an b € ¢ implies (a2, b~1) 2 ¢! and conversely.

For the proof we have, according to the well known reduction,
only to treat the case where F is a p-adic field F=F, and % is a nor-
mal simple algebra over F. Then U is a (complete) matric ring
D,=) % r1€iD over a division algebra D, where € is a system of
matric units commutative with every element of D. D possesses a
unique maximal order I, and I has a unique prime ideal P.

Notation. If a;, (2, k=1, 2, - - -, 7), is a system of rational integers,
we denote by M(ai;) the ideal ) ze:xP%* in .

1 In the following we shall adopt the terminologies used in M. Deuring, Algebren,
Ergebnisse der Mathematik, vol. 4, no. 1, 1935,

2 If the algebra is a quaternion algebra, then the converse is also valid. Cf.
M. Eichler, Journal fiir die reine und angewandte Mathematik, vol. 174 (1936), §7.

3 Thus the intersection and the sum are no more normal ideals except for trivial
cases; cf. Nakayama, Proceedings of the Imperial Academy of Japan, vol. 12 (1936).
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M(a;y) is an order if and only if a;;=0, a;u+a=ax for all 4, &, 1.
On assuming this condition it is a maximal order if and only if
> a:x=0. By a simple calculation we then have the following lemma.*

LEMMA 1. 4 necessary and sufficient condition that M(a;x) be a maxi-
mal order is that there should exist r rational integers c; such that
@ik =cr— C;. Every normal ideal whose left and right orders are M (cr— c;)
and M(dy—d;) respectively has the form P°M(dy—c;) =M (dr—c;+a).

It follows from a lemma of Chevalley® that a maximal order in %
has really the form M(a;x) (whence the form M(cy—c;)) whenever it
contains all diagonal €1, €2, - -+, €

LeMMA 2. There exists a regular element o in N such that
oS = M), o S = M(cr, — ¢i); 1= C = = Cpe

Proor. There is, as is well known, a regular element 8 such that
B~13:8= M(0). Consider the distance ideal diz= (1) 1=S16 of
to .. The theory of elementary divisors tells the existence of two
units £, » in M(0) such that y =£B-1687 is a diagonal matrix with di-
agonal elements P, (1= - - - =¢.), 'y=2 e.:P°, where we denote,
for the sake of convenience, a prime element of the prime ideal P by
the same letter P. Put o =f7. Then this « possesses the required prop-
erty: o~ 'S =711y = M(0), a1 Sea ="M (0)y = M(cr—c;).

LemMA 3. There exist two regular elements o, 3 in N such that
aaf = M(0), abB = M(d, — ¢:);
Q262 26, A1 =dy = Zd,.

Proor. Let 3/, 3¢ [, 3/ ] be the left and the right orders of a
[6]. According to the above lemma there exist vy, 8 such that
Y3y =613 B=M(0), v'J§v=M(cr—c:), B J{B= M —d/!).
v~ 'aB is a two-sided ideal of M(0) and has a form PeM(0). Put
a=(yP%~t. Then «aaf=M(0). Moreover, abB is of a form
M(d{ —c;+b) (Lemma 1). We put dr=d# +b, and this completes
the proof.

We note further that the left order of an ideal M(a;x) is M(bir)
where b,y =max; (a;;—ax;).

After these preliminaries our theorems are easy to prove. In Theo-
rem 1 we may, according to Lemma 2, assume that $= M(0),
Se=M(cr—c¢i), (1= - -+ Z¢,). Suppose J1N F=J:nJ, Since

4 Cf. Nakayama, Japanese Journal of Mathematics, vol. 13 (1937), p. 339.

§ Chevalley, Abhandlungen aus dem mathematischen Seminar der Hamburgischen
Universitit, vol. 10 (1934), p. 87.
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€:; € S‘] n 32 g 3(3, 34, itfollows that 3(3, 8‘4 have the form 83 = M(dk '—d,) ,
S4=M(fr—f:). Moreover max (dr—d:, fr—f:)=max (0, cr—cs),

(4, k=1, 2, - -, r), This implies max (dx—d;, fr—f:) =0 if 1=k%,
whence d,= - - - 2d, and fi= - - - =f,. On applying the same rela-
tion to =1, k=r, we find that either d,=d, or fi=f,. In the first case
we have di= - - =d,, fi—fi=c1—c¢;, (=1, 2,--., r), whence

$1=33, Jo=4. The second case gives of course $1=34, F2=3s.

The assertion about the sum follows now from Theorem 2, which is
in turn contained in Theorems 3 and 4.

As to Theorem 3 we notice first that if «, 3 are two regular ele-
ments, the ideals ara~!, 8183, B~tB, B~'t'8 have the same signifi-
cance for aaf and abf as the ideals t, 8, t, t’ have for a and b. Hence
it is sufficient, by Lemma 3, to consider the case where

Q=M(0), b=M(dk—C,‘);

C12C = 2 Cry dizd =z -

(1)

1\%
£

Then an b= M(max (0, dx—c;)) and o= M(a;;) with
aix = max; (max (0, d; — ¢;) — max (0, d; — cx))

{max 0,d, — ¢;) —max (0,dy — ¢x) = fo — fi for 4=k,
" \max (0,d, — ¢;) —max (0,d, — ¢;) = gr — g for i =k,

where f;=—max (0, di—c;), gi= —max (0, d,—c¢;). Since fr—f;= or
<gr—g: according as 2=k or 1<k, we find that o is the intersection
of the two maximal orders M(fx—f:;) and M(gr—g;). Further, if we
put vy =Z €;:P~°, 6 =Z €;;P—%, then t=yP2M(0) and 8= M(0)P—49,
whence t=Pe=4M(0), t’' =P34} (0). From this we can easily verify
the precise characterization of o given in the theorem.

The part on the sum (a, b) can be shown by a similar computation.
And indeed from that computation we obtain the last assertion in the
theorem.

Finally, to prove Theorem 4 we observe again that we have only to
consider the case where a, b have the form (1). a N b= M(max (0,
dr—ci), (a7, b)) = M(min (0, cx—d;)) because b—'= M(c,—d;), and
here we notice that max (0, dx—c¢;) = —min (0, ¢;—di). The third
normal ideal ¢ can be expressed as ¢=7"1M(0)o~! with regular ele-
ments ¢ = €xS;k, T=p €ixtir. Let Peit be the exact power of P which
divides s, Pe{|sq; if s:x=0 we put c;p= 0. Let similarly Pdi¥{|t,,.
It is evident that M (a.z), with a system of rational integers a;x, con-
tains ¢~'=¢ M (0)7 if and only if

(2) Cij 4+ du = Qik,y for all i, j, k, 1.
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Hence, if we show that the same condition is also necessary and
sufficient in order that M(—ax;) S¢, then we will be through. But
this is also easy to see. For, ¢=7"1M(0)o~! consists of all 7= €;¥:z
=710 einxir)o! with x,, & I. On taking a pair (, I) of indices, let
us consider those 7 such that y;;,=0 for (¢, k) #(j, [). In other words,
we consider the equation 7‘1(2 €ixXik)0 = €,y 1. But this is equiva-
lent to Zeikx;k=76,-lyjza, or

(3) Xik = t,-,-y,-ls;k, i, k= 1, 2, crt T

Suppose now M(—ar;) Ec. Then (3) with y;;=P~-% must have a
solution x;x ¢ I. Hence 0 =d;;—a;+cux (for all 4, ). Since (j, /) was an
arbitrary pair of indices, we have thus established (2). Assume con-
versely (2). Then obviously x;x=¢;;P~%is;;, ¢ I whence €;;P~%i & ¢ and
M( —ak,-) __C= C.

A second proof of the last part of Theorem 3 is as follows: We ob-
serve first that every ideal m in ¥ is additively generated by regular
elements contained in m.® For, if £ e m we take a scalar element a (& F)
in m different from all the characteristic roots of the matrix which
represents £ in a faithful representation of A. Then £—a (e m) is evi-
dently a regular element and £=({—a)-+a. Now, let @ be any regu-
lar element from the left orderof @ N b;a(a N D) Ea N b. Since aa and
ob are normal ideals, we have, from Theorem 4, (a—'a !, b~la~!) 2 a7,
b~1 whence (a™?, b )a 12 (a"t, b7Y), (a7% b7 2(a"l, b~Ya. This
shows that the left order of a N b is contained in the right order of
(a1, b~1). But the converse can be seen in quite a similar manner.

Remark. The structure of the residue classalgebra$ N $e/p(S1 N Se)
is easy to analyze, but perhaps does not deserve a detailed discussion.
We merely note that the algebra is not symmetric, in fact is not
weakly symmetric,” except for the trivial case ($1),=(S82),; this re-
mark may be of some interest in view of a recent paper by R. Brauer.?
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8 We exclude here the trivial case of a finite underlying field F.

7 See Brauer-Nesbitt, Proceedings of the National Academy of Sciences, vol. 23
(1937); Nakayama-Nesbitt, Annals of Mathematics, (2), vol. 39 (1938).

8 Brauer, On modular and p-adic representations of algebras, Proceedings of the
National Academy of Sciences, vol. 25 (1939).



