NULLIFYING FUNCTIONS!
F. J. MURRAY

Introduction. A function f(x) defined on the unit interval (0, 1) will
be called nullifying if we can find a set S of (0, 1) for which m(S) =1,
m({f(x);xeS})=0. Examples of homeomorphisms which are nullify-
ing and hence termed singular are well known.? We shall however
consider simply the nullifying property itself.

If f(x) is nullifying and ¢(x) is not, one might expect that ¢(x) +f(x)
shares with ¢ the property of being not nullifying. But this is not

always true as the following example shows. Let .oqc - - - denote
the dyadic expansion for x, that is, x =01/2+ /224 - - - with a;=0
or 1. Let v1(x)=.10030 - - - and ve(x) = .0a00y - - - . It is easily

verified that both v, and v, are nullifying. Hence f(x) =1—u, is also
nullifying. Let ¢ =x. Then f+¢=1—v,+x=1+419, is also nullifying.

But this suggests the question: Does there exist a nullifying func-
tion f(x) such that f(x) +px is nullifying for every value of p? We con-
struct such a function in the present note.

Our method of proof can be summarized as follows. Considering the
set {f(x) +px;x e (0,1) } , we let p=cot 6. (Note 65<0.) If this set has
measure zero, this will still be true if we multiply by sin § and con-
versely. Thus we may consider the sets {x cos §+f(x) sin 0;x ¢ (0, 1)}
for each 0 between —m/2 and m/2. If we consider the line through
the origin of inclination #, we can assign a coordinate to each of its
points in the usual manner with positive direction to the right or, in
the case of the y axis, upwards. The set {x cos 0+f(x) sin 6; x ¢ (0, 1) }
is the set of coordinates of the projection onto this line of the graph
of f(x). Thus it suffices to find a function f(x) which is such that the
projection of its graph onto any line not parallel to the x axis is of
measure zero. We proceed to find the graph of such a function by an
intersection process on sets in the plane. This process is described in
detail in what follows.

A more general question is: Given F(x, v, p), under what circum-
stances can we find a function f(x) such that F(x, f(x), p) is nullifying
in x for every value of p? It is comparatively easy to abstract the
properties of F=y-+px which are essential to the present discussion,
and these will prove sufficient to obtain an answer to the question.

1 Presented to the Society, December 29, 1939.

2 Cf. E. R. van Kampen and Aurel Wintner, On a singular monotone function,
Journal of the London Mathematical Society, vol. 12 (1937), pp. 243-244. References
to preceding examples are given in this paper.
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However the writer hopes to obtain a more penetrating analysis of
this subject soon. The writer will also consider the more general ques-
tion of obtaining an f(x) the substitution of which will make nullify-
ing not only one but a set of F's.

Definition of a G,. Let us divide evenly the unit square of the plane
in squares of side 1/2¢. The coordinates of the vertices of these
squares are dyadic rational, that is, of the form ¢/2* for some in-
teger a. Two squares are said to be in the same column if they have
the same projection on the x axis. A set of such squares with one and
only one (closed) square in each column will be termed?® a G,.

Notation. If /yis the line through the origin with inclination § and P
is any point of the plane, we shall denote by m3(P) the projection of P
onto . If S is a set of points, we denote by 74(.S) the projection of S
onto /s. The linear measure of a linear set .S we denote by u(S).

LEMMA 1. Let m be such that 0=m=1. Let ¢>0 and a G, be given.
Let o be such that 7/2=a2w/4 and cot a=m. Then we can find a
Goyi € G, such that for 06 <m/2,

p(ro(Gaps)) < (1 + m?)12sin |6 — al +e.

Proor. Let us consider a square B of G,. Then it is possible to take
a line I of slope —m, such that for every x in the projection of B
on the x axis, we have a point (x, ¥) in B and on IV, Let [V intersect
the left-hand side of B at Py and the right-hand side at Q5.

Let us divide B into squares of side 1/2°+¢. Now it is readily seen
that for each column of smaller squares in B there is at least one
square with an interior point on IV, (If m =0, this is not true, but
then we can substitute for “interior point,” “interior point or point
on the upper side.”) Define G, ; so as to contain for each column the
lowest such square.

We also take a square of side 1/2¢t¢, whose upper right-hand vertex
is at Pp. We denote the lower left-hand end point of this square by
P4 . Similarly we take a square of side 1/2*+¢ whose lower left-hand
vertex is 0, and we denote the upper right-hand vertex by Qf .

We are going to consider m4(G,4s) and we let < and = refer to the
order of the points on J, the direction of the greater being to the right
of the smaller.

We shall show that if P e G411, and 0 =0 =, then m(PF ) S mo(P).

3 We shall ignore the logical distinction between a set of squares and the corre-
sponding set of points. G, denotes either a (closed) set of points or a set of squares
according to the context.
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For P (xg, y#) is the lower left-hand vertex of a square whose up-
per right-hand vertex alone is on /., Now every square C of G, con-
tains an interior point which is on [V (if m =0, confer above). Thus
if I®’ is parallel to IV and through Py, every point P (x, ¥) of Gy
is above or on /', Furthermore x >x5g .

Let P’ (x’, ") be the intersection of /Y’ and the line through P
parallel to the y axis. P is above P’ and hence ms(P) =ms(P’). On the
other hand x’=x>x4 . Let ] denote the line through P# perpendicu-
lar to J. The slope of / is more strongly negative than that of IV,
It follows that for x=xg, IV’ is to the right of / and hence my(P’)
=me(P# ). This and the previous result yield ms(P) Zms(P5 ).

A similar argument will show that m(QF ) =ms(P).

Thus me(PF ) S me(P) =me(QF ). This implies that the projection of
that part of G,;; which lies in B is contained in the interval
me(PF )me(QF ). Now if Pp has the coordinates (xs, y5), then Qg has
the coordinates (xzp-+1/2¢, yz—m/2%), P4 has the coordinates
(xp—1/2°%t, yp—1/2++%), and QF has the coordinates (xp+1/2¢
+1/20% yp—m/2041/25+1).

Consider lg; 3, the line through the origin perpendicular to /5. Ac-
cording to a formula of elementary analytic geometry, the directed
distance of any point P (x, ¥) to lgtr2 is x cos 8+ sin 6, the directed
distance being positive if (x, ) is to the right of /g, 2 and negative
to the left. This directed distance is not changed if we project P onto
Iy, and so x cos 0+ sin 0 represents also the directed distance of 7s(P)
from lo, .2, or since Iy is perpendicular to leins, from the origin O
along Js.

Thus Ome(Pg) has length (xp—1/2++) cos 0+ (yp—1/2°t%) sin 6
and Ome(QF) has the length (xp+1/2¢41/2%%) cos 0+ (yg—m/2¢
+1/25+%) sin 0. Hence me(PF )me(QF ) has length

(1/2¢ + 1/2++1) cos § — (m/2* — 1/2¢+t-1) sin 6

for 060 =a. Thus the projection of that part of G411 which lies in B
has measure not greater than

1/22(cos 6 — m sin 6) + 1/22(1/2*(cos 6 + sin 6)
< 1/2%(cos 6 — m sin 0) + 1/2:(1/2¢2),

There are 2¢ squares like B, and this implies that for 0 <0 <, the
projection of G,;; has measure not greater than

(cos § — m sin 6) + 1/2¢2 = (1 + m2)/2 sin (a — 6) + 1/2¢2.

A similar argument holds in the case a <6 <m/2, with however the
smaller added squares in different positions, and during the argument
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certain inequalities are reversed. The corresponding result is that, for
a<f=w/2,

w(me(Gepe)) < msin 6 — cos 6 + 1/2t2
= (1 + mH) 2 sin (8 — ) + 1/2¢2.

If ¢ is taken large enough so that 1/2%2 <, the final results of the
preceding two paragraphs are sufficient to prove our lemma.

LEMMA 2. Suppose m>1, and that a G, and an €>0 are given. Let o
be such that w/4>a >0, cot o =m. Then we can find a Gort € G, such that
for 0<0<w/2,

w(me(Gort)) = (1 4+ m2)/2 sin l 6 — al + e.

Proor. Let B be any square of G,. Let IV, [® ... [® denote a
set of lines of slope —m with the following properties: (a) each /¢
contains an interior point of B; (b) if PYQY is the line segment
B-I® (B is closed), PY¥ is on the left side of B, 0¥ is on the right
side of B, and fori=1,2, - - -, k—1, P%"V is on the upper side of B,
Q0% is on the lower side of B, and Q¥ has the same x coordinate as
P4V The existence of such a set of lines is easily shown.

Let the coordinates of P be (x%, y¥), those of Q¥ be (u, v¥).
From the above we see that x% =a/2°, ¥ =b/2"4p/2° where
0<p=1, uP=a/24p/m-2°, u@=a/2°+(p+1)/m-2°, and in gen-
eral uf=a/2+(p+i—1)/2°-m, for i=1, 2,---, k—1, while
u®) = (a+1)/2°. From this it follows that

b+ k—2)/m2 <1/2 < (p+ k — 1)/m-2°

or (p+k—2)<m<p+k—1or k—1<m-+(1—p) <k. Hence if [m] de-
notes the largest integer less than or equal to m, then k= [m], [m]+1,
or [m]+2. Thus k<m+2.

We next divide the square B of S, into smaller squares of side
1/2¢+t, The lines IV, - - -, I® have been chosen so that for each x
in the projection of B on the x axis, there is at least one /¥ which con-
tains a point (x, y) in B. This can be used to show that for each col-
umn of smaller squares in B, there is at least one smaller square which
contains a point on some /? and interior to B. Define G,y so as to
contain the lowest such square in each column.

For each 4, let us consider those squares of G..: which contain
points of /(9. An argument similar to that used in Lemma 1 will show
that the projection of this part of G..: on l; has measure not greater
than

length of I¢. B) sin I 9 — a| + 1/20++2,
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The sum of the lengths of the I9-B is (1/2¢)(1+m?)¥2 and there are
at most [m]+2 of them. Thus
w(mo(Gope- B)) = (1/2)((1 4+ m) 2 sin |6 — | + ([m] 4 2)/2+3).
Since there are 2¢ such squares B, we have
u(re(Gors)) S (14 m) 2 sin [0 — af + ([m] + 2)/2+2.

We can take ¢ sufficiently large to obtain our result.

This result is interesting only in the range 0 <6 <2, for outside
this range other methods give more effective inequalities.

The argument of Lemmas 1 and 2 can be modified to apply to the
case in which m is negative, with the following result.

LEMMA 3. Suppose an m <0,a G, and an ¢>0 are given. Let o be such
that cot a=m and —w/2 Za<0. Then we can find a Goy: € G, such that
for —w/2<6<0,

w(re(Gere)) = (1 + m?)Y2 sin l 0 — a| +e.
LeEMMA 4. Let my and my be given with ms>my 2 0. Let o; be such that
m/22a;>0, cot a;=m; for i=1, 2. Consider the function
F(8) = min ((1 + mp) " sin (0 — ag), (1 +m1)" " sin (a1 — 6))
for ce <0 <ay. Then for this range of 6,
FO) < (mg — my)/20ms + 1)

PROOF. For a0 =<0cy, (14+m2)'? sin (§—as) is increasing while
(14my)Y2 sin (o —0) is decreasing. Also we readily see that if 7 is
such that

a1+ m“;)ll2 sin (n — ag) = (1 + m‘i)”2 sin (ay — 1)

then F(0) is equal to the first expression for a; <6 <% and to the sec-
ond expression for <60 <a;. Hence F(n) is the maximum value of
F(0) for the given range of 6.

Expanding sin (y —as) and sin (o1 —7), using the definition of «;,
collecting terms in sin 7 and cos 5 and dividing by cos 7 yields

tann = 2/(my + ms).
The value of F(7) is then seen to be
(me — m2)/2(1 + (m1 + ma)*/4) V2 < (g — my)/2(1 + m) 2.

This and the result of the preceding paragraph prove the lemma.
Consider the sequence 0, 1, 0, —1, 2, 3/2, 1, 1/2, 0, —1/2, —1,
—-3/2, —2,4,15/4,---,1/4,0, —1/4,- .-, —15/4, —4, - - - . We
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denote the 7th term in this sequence by m;. Notice that the terms of
this sequence can be grouped so that the first group contains 1, the
second group 3, the third group 9, and the kth group 22¢-%+1. The
maximum value in the kth group is 2%~2 and the difference between
any two adjacent terms in this group is 1/2%2,

Let {e;} denote the sequence such that if 4 is a subscript of the
kth group of the preceding paragraph, then e;=1/2* Let G =G,,
the unit square itself, and G® be defined as the G,y which results
when either Lemma 1, 2, or 3 (depending on m;) is applied to G4V,
m; and e,.

LEMMA 5. Let G be as above. Let 0 be such that 7/220>0. Then
lim.., p(s(G9)) =0.

ProOOF. Let €>0 be given. Take %k such that ¢/2>1/2%! and
2%=2>cot §. Then we can find an m; in the kth group such that m; >0
and m;=cot 0 >mi.

Now since G 3 GU*D, we have m(G?) 2 we(GE*Y) and u(me(GM))
= u(me(GY*D)). Thus u(me(GU*D)) is subject to the inequality which
Lemmas 1 and 2 impose upon u(me(G®)). Thus

u(re(GEHD)) < min [(1 + m:;)”2 sin l 6 — a;l, 1+ m2i+1)1/2
csin |0 — aia| ] + €, (cot ai=m,).
Since a; =0 =41, Lemma 4 yields
p(moGHD)) £ (ms — mea) /2(1 + M) V2 + e < 1/201 4+ 1/2F < e,
Also if j=i+1, GP € G+, and we obtain
0 < u(me(GD)) = u(me(GEHD)) < e.

Thus we have shown that given an ¢>0, we can find an ¢ such that
for j>1 this equation holds. The lemma is now proved.

LEMMA 6. Let G be as in Lemma 5. Let G=]]G®. Then G is a
non-empty closed set such that if 0 <0 <w/2, then u(me(G)) =0.

ProOF. Since the G»’s form a decreasing sequence of closed sets,
their intersection is a non-empty closed set. Since GcG®,
0= u(me(@)) S u(me(G?)). Thus Lemma 5 now implies u(ms(G)) =0.

Results similar to those of Lemmas 5 and 6 hold for 0>60> —m/2.
The method of obtaining them should be clear from the preceding
discussion and we merely state the final result as follows.

LeMMA 7. If G is as in Lemma 6, then for 0>0> —x/2, u(ms(G)) =0.
LeEMMA 8. G is the graph of a function y=f(x).
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Proor. For 0=a =1, let p, denote the line x=a. Then the sets
Pq- G form a decreasing sequence of closed intervals on p,, with one
and only one point (a, b) in common. Thus p,- G consists of one and
only one point (a, b) and b is a function of a.

Now, as we have pointed out in the proof of Lemma 1, for any
point P (x, ¥), x cos 8+ sin 0 is the directed distance of ms(P) along I,
from the origin. Using Lemmas 6, 7, and 8, we obtain that for
m/2260>00r 0>0> —7/2,

0 = u(me(@)) = u({x cos 8 + y sin 6; (x, ¥) sG})
= u({x cos 0§ + f(x) sin9; 0 = x = 1})
=|sin 6] u({x cot 6 + f(x); 0 < « < 1}).
Letting p=cot 0 we obtain that for every value-of p,
p({f(%) + px;0 < x < 1}) = 0.

Since f(x) is the limit of step functions, it is measurable, and we
have proved the following theorem.

THEOREM. There exists a measurable function f(x) defined for
0=x=1, such that for every value of p, f(x) +px is nullifying.
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