
NULLIFYING FUNCTIONS1 

F. J. MURRAY 

Introduction. A function f(x) defined on the unit interval (0, 1) will 
be called nullifying if we can find a set 5 of (0, 1) for which m{S) = 1, 
m( {ƒ(#) ; x e 5} ) = 0. Examples of homeomorphisms which are nullify­
ing and hence termed singular are well known.2 We shall however 
consider simply the nullifying property itself. 

If f(x) is nullifying and 4>(x) is not, one might expect that <p(x) +f(x) 
shares with </> the property of being not nullifying. But this is not 
always true as the following example shows. Let .ai(X2 • • • denote 
the dyadic expansion for x, that is, x = a i / 2 + « 2 / 2 2 + • • • with o: t=0 
or 1. Let Vi(x)= .aiOa^O • • • and v%(x) = .Oc^Ooi • • • . It is easily 
verified that both v\ and z>2 are nullifying. Hence f(x) = 1 — î is also 
nullifying. Let <l> = x. Then /+^> = 1 —z^i+x = 1 +^2 is also nullifying. 

But this suggests the question : Does there exist a nullifying func­
tion ƒ (x) such that ƒ (x) +px is nullifying for every value of p ? We con­
struct such a function in the present note. 

Our method of proof can be summarized as follows. Considering the 
set {f(x)+px\ x e (0, 1)} , we let p = cot 0. (Note 0^0.) If this set has 
measure zero, this will still be true if we multiply by sin 6 and con­
versely. Thus we may consider the sets {x cos 9+f(x) sin 0; x c (0, 1)} 
for each 0 ^ 0 between —7r/2 and 7r/2. If we consider the line through 
the origin of inclination 0, we can assign a coordinate to each of its 
points in the usual manner with positive direction to the right or, in 
the case of the y axis, upwards. The set {x cos 9+f(x) sin 0; x t (0,1)} 
is the set of coordinates of the projection onto this line of the graph 
of f(x). Thus it suffices to find a function ƒ(x) which is such that the 
projection of its graph onto any line not parallel to the x axis is of 
measure zero. We proceed to find the graph of such a function by an 
intersection process on sets in the plane. This process is described in 
detail in what follows. 

A more general question is: Given F(x, y> p), under what circum­
stances can we find a function ƒ (#) such that F(x,f(x), p) is nullifying 
in x for every value of p? It is comparatively easy to abstract the 
properties of F = y+px which are essential to the present discussion, 
and these will prove sufficient to obtain an answer to the question. 

1 Presented to the Society, December 29, 1939. 
2 Cf. E. R. van Kampen and Aurel Wintner, On a singular monotone function, 

Journal of the London Mathematical Society, vol. 12 (1937), pp. 243-244. References 
to preceding examples are given in this paper. 
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However the writer hopes to obtain a more penetrating analysis of 
this subject soon. The writer will also consider the more general ques­
tion of obtaining an f(x) the substitution of which will make nullify­
ing not only one but a set of F's. 

Definition of a G8. Let us divide evenly the unit square of the plane 
in squares of side 1/28. The coordinates of the vertices of these 
squares are dyadic rational, that is, of the form a/28 for some in­
teger a. Two squares are said to be in the same column if they have 
the same projection on the x axis. A set of such squares with one and 
only one (closed) square in each column will be termed3 a G8. 

Notation. If le is the line through the origin with inclination 0 and P 
is any point of the plane, we shall denote by Te(P) the projection of P 
onto U. If 5 is a set of points, we denote by Te(S) the projection of 5 
onto le. The linear measure of a linear set S we denote by /n(S). 

LEMMA 1. Let m be such that O ^ r a ^ l . Let e > 0 and a G9 be given. 
Let a be such that 7 r / 2^a^7 r /4 and cot a = m. Then we can find a 
G8+t c Gs such that for 0 S 0 ^ T T / 2 , 

/ I M C + O ) S (1 + w2)1/2 sin | 6 - a | + e. 

PROOF. Let us consider a square B of G8. Then it is possible to take 
a line Z(1) of slope — m, such that for every x in the projection of B 
on the x axis, we have a point (x, 3/) in B and on /(1). Let /(1) intersect 
the left-hand side of B at PB and the right-hand side at QJS. 

Let us divide B into squares of side 1/28+t. Now it is readily seen 
that for each column of smaller squares in B there is at least one 
square with an interior point on Z(1). (If m = 0, this is not true, but 
then we can substitute for "interior point," "interior point or point 
on the upper side.") Define G8+t so as to contain for each column the 
lowest such square. 

We also take a square of side 1/2s+t, whose upper right-hand vertex 
is at PB> We denote the lower left-hand end point of this square by 
PB . Similarly we take a square of side 1/2s+t whose lower left-hand 
vertex is ÇB, and we denote the upper right-hand vertex by QB . 

We are going to consider ire{Ga+t) and we let < and ^ refer to the 
order of the points on U, the direction of the greater being to the right 
of the smaller. 

We shall show that if P t G8+t, and 0^0^cx, then 7rd(PB') ^T${P). 

3 We shall ignore the logical distinction between a set of squares and the corre­
sponding set of points. Gs denotes either a (closed) set of points or a set of squares 
according to the context. 
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For PB {xi , yi ) is the lower left-hand vertex of a square whose up­
per right-hand vertex alone is on /(1). Now every square C of G8+t con­
tains an interior point which is on /(1) (if w = 0, confer above). Thus 
if /(1)/ is parallel to Z(1) and through Pi, every point P (x, y) of Gs+t 

is above or on /(1)/. Furthermore x>xi . 
Let P' (x', y') be the intersection of / (1) ' and the line through P 

parallel to the y axis. P is above P' and hence TQ{P) ^Te(P'). On the 
other hand x' = x >xi . Let / denote the line through Pi perpendicu­
lar to 1$. The slope of J is more strongly negative than that of /(1)/. 
It follows that for x^xi, /(1)/ is to the right of / and hence Te(P') 
}£ire(Pi). This and the previous result yield T$(P) ^w$(Pi). 

A similar argument will show that Td(Qi)'à:Td(P). 
Thus Te(Pi) SireiP) SweiQi). This implies that the projection of 

that part of G8+i which lies in B is contained in the interval 
Tro(Pi)7Te(Qi). Now if PB has the coordinates (XB, yi), then QB has 
the coordinates (XB + 1/2% yB — m/2*), Pi has the coordinates 
(xB-l/2s+t, yB-l/28+% and Qi has the coordinates (xB + l/28 

+ 1/2*+', yB-tn/2s + l/2s+t). 
Consider h+r/2, the line through the origin perpendicular to k. Ac­

cording to a formula of elementary analytic geometry, the directed 
distance of any point P (x, y) to le+ic/2 is x cos 9+y sin 0, the directed 
distance being positive if {x1 y) is to the right of /Ö+TT/2 and negative 
to the left. This directed distance is not changed if we project P onto 
k, and so x cos 0+y sin 0 represents also the directed distance of Td(P) 
from h+r/2, or since k is perpendicular to le+v/2, from the origin O 
along 1$. 

Thus OireiPi) has length (xB-l/2s+t) cos 6+(yB-l/2s+t) sin 0 
and Oire(Qi) has the length (xB + l/28 + l/2s+t) cos 0 + (yB-rn/2a 

+ l/28+0 sin 0. Hence Te(Pi)Tre(Qi) has length 

(1/2* + l/2s+<-1) cos 0 - (m/2* - \/28+t~l) sin 0 

for 0 ^ 0 ^ a . Thus the projection of that part of Gs+i which lies in B 
has measure not greater than 

l/2*(cos 0 - m sin 0) + l/2'(l/2«-1(cos 0 + sin 0) 

< l/28(cos 0 - m sin 0) + l/2*(l/2<-2). 

There are 2s squares like B, and this implies that for O<0^ce, the 
projection of Gs+t has measure not greater than 

(cos 0 - m sin 0) + 1/2'-2 = (1 + m2)112 sin (a - 0) + l/2<-2. 

A similar argument holds in the case a<6^w/2} with however the 
smaller added squares in different positions, and during the argument 
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certain inequalities are reversed. The corresponding result is that, for 
a<0^T/2, 

M(7r0(G8+e)) < m sin 6 - cos 6 + l/2<-2 

= (1 + m2)1'2 sin (0 - a) + l/2*~2. 

If / is taken large enough so that 1/21~2 < e, the final results of the 
preceding two paragraphs are sufficient to prove our lemma. 

LEMMA 2. Suppose m > 1, and that a Gs and an e>0are given. Let a 
be such that x /4 >a > 0, cot a = m. Then we can find a G8+t c G8 such that 
for O ^ 0 < T T / 2 , 

vMC+t)) ^ (1 + 0 1 / 2 sin | 6 - a | + €. 

PROOF. Let 5 be any square of G8. Let /(1), /(2), • • • , l(k) denote a 
set of lines of slope —m with the following properties: (a) each /(i) 

contains an interior point of B; (b) if P^Q® is the line segment 
B-l(i) (B is closed), Pf is on the left side of B, Q^ is on the right 
side of By and for i = l , 2, • • • , k — 1, P^+ 1 ) is on the upper side of B, 
Q^B is on the lower side of B, and QB* has the same x coordinate as 
p(*+D ^ j ^ existence of such a set of lines is easily shown. 

Let the coordinates of Pf be (*g>, yf), those of Qf be (uf, v{$). 
From the above we see that x{B)=a/2\ yf = b/2s+p/2s where 
0 < p ^ l , u^^a/r+p/m-r, uf=a/2s + (p + \)/m-2\ and in gen­
eral uf=a/2* + {p+i--\)/28-m, for * = 1, 2, • • • , jfe-1, while 
«§ ) = (a + l)/2*. From this it follows that 

(p + * - 2 ) / w 2 - < 1/28 ^ (p + k - l ) /w-2 ' 

or (p+& —2) <m<p+k — 1 or ife —1 <ra + (l —p) ~ &• Hence if [w] de­
notes the largest integer less than or equal to ra, then k = [ra], [m] + 1, 
or [ m ] + 2 . T h u s & ^ r a + 2 . 

We next divide the square B of S8 into smaller squares of side 
1/2*+'. The lines /(1), • • • , Z(/k) have been chosen so that for each x 
in the projection of B on the x axis, there is at least one /(i) which con­
tains a point (Xj y) in I?. This can be used to show that for each col­
umn of smaller squares in B> there is at least one smaller square which 
contains a point on some l(i) and interior to B. Define Ga+t so as to 
contain the lowest such square in each column. 

For each i, let us consider those squares of G8+t which contain 
points of /(i). An argument similar to that used in Lemma 1 will show 
that the projection of this part of G8+t on U has measure not greater 
than 

(length of W-B) sin | 6 - a\ + l/2*+'-2. 
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The sum of the lengths of the l^-B is (l/28)(l+m2)1/2 and there are 
at most [m]+2 of them. Thus 

nUeiGs+rB)) ^ (1/2')((1 + m2)112 sin | 0 - a | + ([m] + 2)/2<~2). 

Since there are 2 s such squares B, we have 

M^CC+O) ^ (1 + w2)1 '2 sin | 0 _ a | + ([m] + 2)/2<~2. 

We can take / sufficiently large to obtain our result. 
This result is interesting only in the range O < 0 < 2 a , for outside 

this range other methods give more effective inequalities. 
The argument of Lemmas 1 and 2 can be modified to apply to the 

case in which m is negative, with the following result. 

LEMMA 3. Suppose an m<0,aG8 and an e > 0 are given. Let a be such 
that cot a = m and — w/2 ^ a < 0. Then we can find a G8+t c Gs such that 
for - 7 r / 2 ^ 0 < O , 

M(TTÖ(GS+,)) ^ (1 + m2)1'2 sin | 6 - a\ + €. 

LEMMA 4. Let nti and m2 be given with m2>mi^0* Let ai be such that 
7r /2^ou>0 , cot <Xi = nii for i = l, 2. Consider the f unction 

F(6) = min ((1 + ml)1'2 sin (0 - a2), (1 + ^ I ) 1 ' 2 sin («i - 0)) 

/or a 2 ^ 0 ^ a i . Then for this range of 0, 

F (S) S (m2 - wi)/2(mî + 1)1/2. 

PROOF. For a 2 ^ 0 ^ a i , (l+m%)1/2 sin (0—0:2) is increasing while 
( l + ^ i ) 1 / 2 sin («1 — 0) is decreasing. Also we readily see that if rj is 
such that 

(1 + m2) sin (77 — a2) = (1 + ni\) sin (ax — 77) 

then F(0) is equal to the first expression for a2S0^V and to the sec­
ond expression for 77^0^0:1. Hence F(rj) is the maximum value of 
F(0) for the given range of 0. 

Expanding sin (77 — a2) and sin (cei — 77), using the definition of ai, 
collecting terms in sin 77 and cos 77 and dividing by cos 77 yields 

tan 77 = 2/(nti + ni2). 

The value of ^(77) is then seen to be 

(m2 - wi)/2(l + O i + w2)2/4)1/2 ^ (m2 - m1)/2(l + ml)1'2. 

This and the result of the preceding paragraph prove the lemma. 
Consider the sequence 0, 1, 0, - 1 , 2, 3/2, 1, 1/2, 0, - 1 / 2 , - 1 , 

- 3 / 2 , - 2 , 4, 15/4, • • • , 1/4, 0, - 1 / 4 , • • • , - 1 5 / 4 , - 4 , • • • . We 



464 F. J. MURRAY [June 

denote the ith term in this sequence by mt«. Notice that the terms of 
this sequence can be grouped so that the first group contains 1, the 
second group 3, the third group 9, and the &th group 22/b_3 + l. The 
maximum value in the &th group is 2k~2 and the difference between 
any two adjacent terms in this group is 1/2k~2. 

Let {ti) denote the sequence such that if i is a subscript of the 
kth group of the preceding paragraph, then e»- = l/2*. Let G (0 )=G0 , 
the unit square itself, and G(i) be defined as the Gs+t1 which results 
when either Lemma 1, 2, or 3 (depending on mi) is applied to G(*-1), 
mi and e». 

LEMMA 5. Let G(i) be as above. Let 6 be such that 7 r /2^0>O. Then 
lim^ooM(7rö(G ( i )))=0. 

PROOF. Let e > 0 be given. Take k such that */2>\/2k~l and 
2&~2>cot 6. Then we can find an mi in the &th group such that w t > 0 
and mi^cot 6>mi+i. 

Now since G<» D G < * + 1 \ we have TT*(G<») 3 7TÖ(G^+1)) and / * M G ( 0 ) ) 
^ju(7Tö(G(i+1))). Thus/x(7Te(G(*+1))) is subject to the inequality which 
Lemmas 1 and 2 impose upon /ji(Te(G(i))). Thus 

/x(7re(G(m))) :§ min [(1 + m-)1/2 sin | 6 - a, | , (1 + *»Vi)1/s 

• sin | 6 — ai+i\ ] + e»-, (cota* = Wi). 

Since a»;S0^a f-+i, Lemma 4 yields 

M(^ (G<«"" ) ) ^ (m< - m<+i)/2(l + m^x)1 '2 + €< < 1/2*-1 + 1/2* < €. 

Also Uj^i+1, GU) cG<*+1\ and we obtain 

0 < M ( ^ ( G W ) ) ) ^ M ( ^ ( G ( < + 1 ) ) ) < e. 

Thus we have shown that given an e > 0 , we can find an i such that 
for j >i this equation holds. The lemma is now proved. 

LEMMA 6. Let G(i) be as in Lemma 5. Let G=Y[G{i). Then G is a 
non-empty closed set such that if 0<d^ir/2, then JU(7TÖ(G)) = 0 . 

PROOF. Since the G( i) ,s form a decreasing sequence of closed sets, 
their intersection is a non-empty closed set. Since GcG ( *\ 
0^/X(7TÖ(G)) ^/x(7Tö(G(i))). Thus Lemma 5 now implies ix(ire(G)) = 0. 

Results similar to those of Lemmas 5 and 6 hold for O > 0 > —7r/2. 
The method of obtaining them should be clear from the preceding 
discussion and we merely state the final result as follows. 

LEMMA 7. If G is as in Lemma 6, then for O > 0 > — ?r/2,/x(7re(G)) = 0 . 

LEMMA 8. G is the graph of a function y =ƒ(#). 
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PROOF. For O ^ a g l , let pa denote the line x = a. Then the sets 
pa-G^ form a decreasing sequence of closed intervals on pa, with one 
and only one point (a, b) in common. Thus pa-G consists of one and 
only one point (a, b) and & is a function of a. 

Now, as we have pointed out in the proof of Lemma 1, for any 
point P {Xy y), x cos d+y sin 6 is the directed distance of 7TÖ(P) along le 
from the origin. Using Lemmas 6, 7, and 8, we obtain that for 
7 r / 2 è 0 > O o r O > 0 > - 7 r / 2 , 

0 = ix(ire(G)) = n({x cos 6 + y sin 0; (x, y) zG}) 

= fi({x cos (9 + ƒ<» sin 0; 0 g x ^ l}) 

= I s in0 | / x ( { # c o t 0 + ƒ ( » ; 0 ^ % ^ l } ) . 

Letting p = cot 0 we obtain that for every value of p, 

/*({ƒ(*) + p x ; O g ^ l } ) = 0. 

Since ƒ(#) is the limit of step functions, it is measurable, and we 
have proved the following theorem. 

THEOREM. There exists a measurable function f(x) defined for 
0 ^ x ^ 1, such that for every value of p, f{x) +px is nullifying. 

COLUMBIA UNIVERSITY 


