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I t is a fact which is familiar2 to projective differential geometers 
that the non-rectilinear asymptotic curves on an analytic non-de­
velopable ruled surface, not a quadric, in ordinary three-dimensional 
space belong to linear complexes if, and only if, the ruled surface be­
longs to a linear congruence, that is, if, and only if, the ruled surface 
has two distinct or coincident rectilinear directrices. It is furthermore 
known3 tha t in this case the asymptotic curves on the ruled surface 
are projectively equivalent. It has also been demonstrated4 that if 
the asymptotic curves on an analytic non-ruled surface S in ordinary 
space belong to linear complexes, then the asymptotic ruled surfaces 
of S, that is, the ruled surfaces composed of the tangents of the 
asymptotic curves of either family, constructed at the points of a 
fixed asymptotic curve of the other family, on 5 have rectilinear di­
rectrices and therefore are such that their asymptotic curves belong 
to linear complexes. The converse of this theorem is also true, as will 
be shown below. Moreover, it will be proved below, by the aid of 
some formulas computed5 by MacQueen and the author, that in this 
case the asymptotic curves of one family on the surface S are projec­
tively equivalent, as are also the asymptotic curves of the other 
family on S. 

In attempting to determine whether the asymptotic curves on the 
asymptotic ruled surfaces of a non-ruled surface 5 are twisted cubics 
if the asymptotic curves on the surface 5 are twisted cubics, the au­
thor answered this question in the affirmative and discovered the 
following general theorem, which seems to have escaped notice hith­
erto and which it is the purpose of this note to put on record and 
demonstrate : 

If the asymptotic curves on an analytic non-ruled surface S in ordi­
nary space belong to linear complexes, then the asymptotic curves of each 
family on S are projectively equivalent, not only to each other, but also 
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to all the non-rectilinear asymptotic curves on all the asymptotic ruled 
surfaces of S which are composed of the tangents of the asymptotic curves 
of the other family on S, constructed at the points of the various asymp­
totic curves of the first family on S. 

In order to prove this theorem it is convenient to collect here the 
notations and equations which form the analytic basis of a classical 
projective differential theory of non-ruled surfaces whose asymptotic 
curves belong to linear complexes. Let us consider in ordinary space 
an analytic non-ruled surface 5 whose parametric vector equation, 
referred to asymptotic parameters u, v, is 

(1) x = x(u, v). 

The four coordinates x of a variable point x on the surface S satisfy 
two partial differential equations which can be reduced, by a suit­
ably chosen transformation of proportionality factor, to Fubini's ca­
nonical form, 

(2) %uu = px + 6uxu + fi%v, ocvv = qx + yxu + dvxv (0 = log ^7), 

subscripts indicating partial differentiation, and the coefficients being 
functions of u, v which satisfy three integrability conditions which 
need not be written here. It is known that if the parametric asymp­
totic curves on the surface 5 belong to linear complexes, the coeffi­
cients j8, 7 can, by a suitably chosen transformation of parameters, 
be specialized so that 

(3) 0 = 7 = (U'V')li2/(U + V), V'V' y* 0, 

where U is an arbitrary function of u alone, and V of v alone, and the 
accent denotes differentiation with respect to the appropriate varia­
bles. Moreover, the coefficients p, q are in this case given by 

(4) p = (1/2) ( 3 U - (3/2K2 - Wv - Ui), 

q = (1/2) (3lvv - (3/2)/,2 - Wu ~ 7 i ) , 

in which / = log j3 and C/i, Vi are defined by 

(5) Ui = (DU2 + EU + F)/U', Vi = (DV2 - EV + F)/V'", 

where D, Ey F are arbitrary constants. The integrability conditions 
are identically satisfied by these expressions for the coefficients of 
equations (2). 

It has been shown6 that the fourth-order linear homogeneous dif-
6 Lane and MacQueen, loc. cit., pp. 337-339. 
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ferential equation for the u-curve through a point x on the surface 5 
has its seminvariants P2, P3, PA given by the formulas 

(6) P 2 = (1/6) ((1/2)5 + U,), P 3 = (1/4) ((1/2)5! +U{), 

P 4 = (l/4)(tfi2 + 3 J 7 l
, / ) , 

where S is the Schwarzian derivative of U, namely, 

(7) s = (u"/uy - {\/2)(jj"/u'y. 

By means of the transformation of proportionality factor 

(8) x = p~V2x, 

this differential equation for the w-curve through the point x can be 
written in the form 

(9) xuuuu + 6P2xUu + 4P8#ti + PAX = 0. 

Since the coefficients of this equation are independent of v, it follows 
that the differential equation of all the ^-curves on the surface S is 
this same equation and that these asymptotic w-curves are therefore 
projectively equivalent, and similarly for the y-curves on 5, as pre­
viously stated. 

It is now proposed to compute the differential equation of the same 
form for the non-rectilinear asymptotic curves on the asymptotic 
ruled surface Rv composed of ^-tangents at the points of the ^-curve 
through the point x on the surface S. Any point y on the fl-tangent 
through the point x (except the point x itself) is given by the formula 

(10) y = P~*l2(hx+ xv), 

where h is an arbitrary parameter. It is possible to determine h as 
a function of u, v so that the locus of the point yf when u varies and 
v = const., is an asymptotic curve on the ruled surface Rv. In fact, 
specializing a known7 result, we find that the locus of the point y 
is an asymptotic curve on the surface Rv in case 

(11) hu = - (3/2)/32. 

But since luv =j82, as can easily be verified, it follows that 

(12) h = - (3/2)lv + c+V2y 

where c is an arbitrary constant and V2 is an arbitrary function of v 
7 Lane, Projective Differential Geometry, University of Chicago Press, 1932, p. 114, 

ex. 6. 
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alone. By the aid of this expression for h> and the transformation (8), 
we find 

(13) y = (c+ V2)x + xv, 

and besides differentiation of equation (9) with respect to v yields 

(14) (xv)Uuuu + 6P2(xv)uu + 4:Pz(xv)u + Pi(xv) - 0. 

I t is now evident that y also satisfies equation (9), identically in c 
and v. Therefore the differential equation for all the non-rectilinear 
asymptotic curves on all the asymptotic ruled surfaces Rv is the same 
as the differential equation (9) for the asymptotic w-curves on the 
surface 5. I t follows that all these curves are projectively equivalent. 
A similar argument can be made with u and v interchanged, and so 
the theorem is proved. 

As a corollary, the theorem that the w-curves on the surface 5 
belong to linear complexes if, and only if, the asymptotic curves on 
the surface Rv do so can be deduced at once, since these curves are 
now known to be projectively equivalent. In like manner, the theo­
rem that the w-curves on the surface S are twisted cubics if, and only 
if, the asymptotic curves on the surface Rv are twisted cubics can be 
deduced. 
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