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If R is a simply connected region of the extended (x, 3;)-plane with 
boundary B, and if Green's function G(x, y) exists for R with pole in 
the finite point 0, we denote by IT} the set of orthogonal trajec­
tories to the level curves G(x, y) =log r, 0 < r < l , in R. The totality 
of circles each osculating at O one of the set of curves T passing 
through 0 consists precisely of the set of circles through 0 and 
through another fixed point D, depending on 0 and R. The point D 
is called the conjugate of 0 with respect to R. The term "circle" is here 
and below used in the extended sense, to include straight line, unless 
otherwise noted. 

In a series of papers1 the writer has recently studied some of the 
properties of the point D, notably (in M and I) that every circle 
through 0 and D cuts B; and (in II) that every point exterior to R 
is the conjugate with respect to R of a suitably chosen point 0 in­
terior to R. It is the object of the present note to establish still fur­
ther properties of the conjugate, namely the following theorems: 

THEOREM 1. Let R be a simply connected region of the w-plane with 
at least two boundary points. Let C be a circle intersecting the boundary 
of R in the finite point a. Let C be the boundary of a circular region R' 
(a half-plane, interior of a circle, or exterior of a circle, boundary points 
not included) whose points lie in R, and let T be a triangle contained 
in R', with the vertex a. Let the sequence of points W\, w2, • • • lie in T 
and approach a. Then the conjugate of wn with respect to R also ap­
proaches aas n becomes infinite. 

THEOREM 2. Let R be a simply connected region of the w-plane with 
at least two boundary points, and let w0 be a boundary point of R. Then 
there exists a sequence of points w\, Wi, • • • in R approaching Wo such 
that the conjugate of wn with respect to R approaches wQ. 

THEOREM 3. There exists a limited Jordan region R of the w-plane, 
a boundary point w0 of R, and a sequence w\, w2, • • • of points of R ap­
proaching Wo such that the conjugate of wn with respect to R becomes infi­
nite with n. 

1 American Mathematical Monthly, vol. 42 (1935), pp. 1-17; Proceedings of the 
National Academy of Sciences, vol. 23 (1937), pp. 166-169; this Bulletin, vol. 44 
(1938), pp. 520-523. We shall refer to these papers as M, I, II respectively. 
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Let w=f(z) map \z\ < 1 onto R. Then the conjugate of w with re­
spect to R is the point 

, 2\f(z)]Kl - zz) 
w = Hz) : 

ƒ"(»)(! - « ) ~ 2zf(z) 
this is the function whose continuity (as a function of w) we are 
studying. 

1. Proof of Lemma 1. As a step in the proof of Theorem 1 we es­
tablish a preliminary result. 

LEMMA 1. Let the finite point O lie interior to the simply connected 
region R whose Green's function with respect to 0 exists, and let each 
point of the boundary B of R lie on or to the right of the vertical line Oy, 
Let at least one point A of B lie to the right of Oy. Then the conjugate D 
of O with respect to R is finite and lies to the right2, of Oy. 

In the proof it is convenient to transform O to infinity by a linear 
transformation of the complex variable, so the boundary B of R can 
now be supposed finite. We preserve the original notation. The con­
jugate of O is a finite point D, the conformai center of gravity3 of R. 
There exists a line L with (for suitable orientation of the plane) each 
point of the boundary B of R lying on or to the right of L, and with 
at least one point A of B lying to the right of L. For definiteness let A 
be the point (or one of the points) of B farthest from L. 

If no boundary point of R lies on Ly a suitably chosen level curve of 
Green's function G(x, y) for R with pole in O lies to the right of L. 
The center of gravity of this level curve with positive mass distribu­
tion defined by the equation 

dG 
da = ds 

dn 
is the conjugate of O with respect to R} and lies to the right of L. 
The conclusion of Lemma 1 follows in this case. Henceforth we sup­
pose at least one point of B to lie on L. 

An arbitrary cut in the region R (assumed to lie in the w-plane) 
corresponds under the conformai map f = f (w/) of R onto | f | > 1 to a 
cut in the region4 | f | > 1. Let a circle K be drawn with center A and 
radius one-half the distance from A to L. A certain simply connected 

2 It follows (see II) that O cannot be a maximum or even a critical point of the 
function r(a). 

3 See M and I. 
4 See for instance Carathéodory, Conformai Representation (Cambridge Tract, 

no. 28), p. 83. 
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region S consisting of points of R and containing some points of R ly­
ing to the right of A, lies interior to K and is bounded entirely by 
points of B and of K. That is to say, we define S as the set of points P 
each of which can be joined to a fixed point H in K and R to the right 
of A , by a Jordan arc PH not cutting B or K. The boundary of S con­
tains at least one arc Q of K whose end-points are points of B but 
which otherwise lies in R; all such arcs Q (by hypothesis belonging 
to the boundary of S) are finite or denumerably infinite in number. 
Under the conformai map each arc Q corresponds to a Jordan arc Q\ 
in the region |f| > 1 whose end-points are distinct points of |f| = 1 , 
whether or not the two end-points of Q are distinct.5 Under the con-
formal map the region S corresponds to a region 5i bounded in part 
by arcs Q\. We now prove that the boundary of S\ must contain at least 
one arc of the circle | f | = 1 . 

Two distinct arcs Qi may have a terminal point 7\ in common, but 
if so the corresponding arcs Q have a terminal point T in common, 
and a suitably chosen neighborhood of T contains no boundary points 
of S interior to K. For there exists a sequence of Jordan arcs J\ in S\ 
with their end-points on the respective arcs Qi; and the end-points of 
the Ji approach 7\. Let a point M1 of Si, whose transform is the point 
M of St be separated by each of these Jordan arcs plus the boundary 
of Si from the neighborhood of T\ in Si. The corresponding sequence 
of Jordan arcs J in S have their end-points on the respective arcs Q, 
and each arc J together with the boundary of S separates M from 
the neighborhood of at least one boundary point of S. If each of the 
Jordan arcs J together with the boundary of 5 separates a neighbor­
hood in S of more than one boundary point from My let E denote 
the totality of such boundary points. No point of E not an end-point 
of an arc Q can be a limit point of a sequence of boundary points of 5 
not lying on E; for two nonintersecting arcs / together with the two 
subarcs of arcs Q intercepted between their terminal points bound a 
Jordan region in 5 which contains then no point of the boundary of S 
in its interior; of course 5 i s simply connected, and no boundary point 
of S lies exterior to K. If E contains more than one point, it contains 
either a point interior to K or a point on K not an end-point of arcs Q 
(hence lying on an arc of K belonging to B)y and in any case contains 
a point N with the property that the mapping function f = £*(w) for R 
is continuous in some neighborhood of N in S and constant (equal to 
the value of f in the point 7\) at every boundary point of 5 in the 
neighborhood, which is impossible.6 It follows that E consists of a 

6 Carathéodory, op. cit., p. 85. 
6 Carathéodory, op. cit., p. 82. 
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single point T; a suitably chosen neighborhood of T contains no 
boundary point of 5 interior to K. 

The method of proof just given shows also that a point Ti of 
| J" | = 1 , not an end-point of an arc of | j* | = 1 which is part of the 
boundary of Si but which is a limit point of an infinity of Jordan 
arcs Qiy corresponds in the sense just considered to a single point T 
on B and K; a suitably chosen neighborhood of T contains no bound­
ary point of S interior to K. The point A is not an interior point of S, 
so it follows that there exists some point of K which is a limit point 
of boundary points of 5 interior to Ky whence not all points of B on K 
can be points T as considered above, and the boundary of Si must 
contain at least one arc of the circle | f | = 1 , say of length cr>0, as we 
desired to prove. 

Denote by d the distance from A to L. Choose r, (0 <r < 1), so near 
unity that an arc of the Jordan curve Br: G{x, y) =log r interior to K 
and 5 corresponds to an arc of | f | = 1/r in Si of length greater than 
<r/2r, which is possible by inspection of the situation in the f-plane; 
and also choose r so near to unity that no point of the curve Br lies 
at a greater distance from B than some positive number 

d' < <rd/(Sir - 2a). 

Then no point of the curve Br lies at a distance greater than d' to the 
left of L. The weight of that part of Br interior to K is at least <r/2. 
The center of gravity of the weighted locus Br lies to the right of L 
at a distance not less than 

{TT-(2 ' -T>'}A-
which is positive. That is to say, the center of gravity of the weighted 
locus Br (that is, the conformai center of gravity of R, or the conju­
gate of O with respect to R) lies to the right of L; so Lemma 1 follows. 

2. Proof of Theorem 1. For convenience suppose the plane oriented 
so that a lies at the right-hand extremity of a horizontal diameter of 
C. Let Rn be the region of the w-plane obtained from R by stretching 
without rotation so that final and initial lengths are in the ratio 
l*K^n), with the new transform of wn corresponding to the origin. 
Here (as in II) we use r(wn) to denote the inner radius of R with re­
spect to the point wn. From each sequence Rn can be extracted a 
subsequence of regions converging to a kernel in the sense of Cara-
théodory. For the corresponding functions w=fn(z) which map 
| s | < 1 onto Rn are univalent w i t h / w ( 0 ) = 0 and | / n (0 ) | = 1 , hence 
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form a normal family in \z\ < 1. Let us suppose a subsequence of the 
Rn to converge to the kernel Ro, with the corresponding mapping 
functions w =/w(2) converging continuously in 
function w=f0(z) for R0t with /0(0) = 0 , | ƒ„' (0) 

z\ < 1 to the mapping 
= 1. The kernel Ro is 

obviously not a single point. Then we have for the subsequence 

(1) lta_2iM5>ll._2.W«»P 
/."(O) •ƒ."«>) 

or in other words (compare I) the conjugate of the origin with re­
spect to Rn approaches the conjugate of the origin with respect to Ro. 

We shall henceforth assume that the sequence Rn itself converges 
to Ro and that (1) is valid. This assumption involves no loss of gen­
erality, for if the conclusion of the theorem is false it is false for a 
sequence of indices such that Rn converges to a kernel and such that 
(1) is valid for that sequence. 

We shall now assume that the angle (argument, amplitude) 
Z(a — wn) approaches a limit y as n becomes infinite; this assump­

tion likewise involves no loss of generality, for if the theorem is false 
there exists a subsequence of the wn for which this angle approaches 
a limit and whose conjugates do not approach a. Of course 7 is not 
the angle T/2 or — 7r/2. 

Denote by tn the boundary point of R nearest to wn\ then tn lies 
on or exterior to C : 

(2 ) I wn - tn I ^ a - I wn I, 
where C is the circle \w\ =a; here we assume also that C is a proper 
circle in whose interior T lies. This assumption involves no loss of 
generality. The inequality 

(3) I Wn " tn I ^ f(ttln) 

is well known.7 Moreover for suitably chosen ô > 0 independent of n 
we have 

(4) h I wn - a I ^ a - I wn I 

by virtue of the fact that wn lies in the triangle T. We obviously have, 
by (2), (3), and (4), 

I Wn — «I /r(Wn) ^ I/O. 

There is no boundary point of Rn or of RQ closer to 0 than the dis-

7 See for instance Pólya-Szegö, Aufgaben und Lehrsâtze aus der Analysis, vol. 2, 
Berlin, 1925, p. 21, exercise 121. 
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tance 1/4, by the distortion theorem (Verzerrungssatz). But by the 
inequality just established there is a boundary point of Rn (namely 
the transform of the point a) on the line segment from 0 in the direc­
tion /.(a — wn) of length 1/5, so there is a boundary point of the 
kernel R0 on the line segment from O in the direction y of length I/O. 
Consequently R0 has at least one boundary point which lies to the right 
of the vertical line through 0. 

It follows from Lemma 1 that the conjugate of O with respect to RQ 
is not infinite, follows from (1) that the conjugate of O with respect to 
Rn approaches a finite limit, and follows from the relation r(wn)—->0 
(proved in II) that the distance from wn to its conjugate with respect 
to R (which is r(wn) multiplied by the distance from O to its conju­
gate with respect to Rn) approaches zero. Theorem 1 is established. 

It is clear from the proof of Theorem 1 that the essential part of 
the proof is that every kernel Ro of a subsequence of the regions Rn 

should have the property that the conjugate of the origin with respect 
to R0 shall be finite; whenever the sequence Rn has this property, the 
condition wn-*a implies that the conjugate of wn with respect to R 
also approaches a. 

3. Proof of Theorem 2. Thanks to Theorem 1, the proof of Theo­
rem 2 is extremely simple. For definiteness suppose w0 finite (the 
contrary case can be reduced to this by a linear transformation). 
Let cok be a point of R whose distance from w0 is less than l/2fc. 
Let Yfc be the circle whose center is cok and whose radius is the distance 
from coA; to the boundary of R; this distance is necessarily less than 
1/2k. The interior of this circle lies in R, but at least one point a of 
the circumference is a boundary point of R. A triangle T satisfying 
the requirements of Theorem 1 can be constructed. By Theorem 1 
there exists a point wu interior to y& whose conjugate with respect to 
R lies in the circle | w — w0\ = l/2 fc_1, and we have | Wk — w0\ ^ l/2fc~1. 
The sequence Wk satisfies the requirements of Theorem 2. 

4. Proof of Theorem 3. The region R whose existence is asserted in 
Theorem 3 is now to be constructed by the following method.8 We 
consider the sequence of circles Cwin the w( = x+iy)-plane, each tan­
gent to its predecessor : 

C0: *2 + y> = 1, d : (* - 3/2)2 + y* = 1/4, 

Cn: (x - 3(2" - l) /2")2 + y2 = 1/22". 
8 This method is quite similar to one employed for a somewhat different purpose 

in a forthcoming paper by Seidel and Walsh, of which an abstract was published in 
Proceedings of the National Academy of Sciences, vol. 24 (1938), pp. 337-340. 
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The interiors of these circles are to be joined by canals in the neigh­
borhoods of the points 

1,2,5/2, • • • ,<*n:3 - 1/2»-1, • • • 

so as to form a Jordan region ; the banks of the canals are short seg­
ments of lines parallel to the axes of reals, a short distance above and 
below that axis near the points an of tangency of successive circles; 
the arcs of the original circles intercepted between those lines are to 
be suppressed, and the banks of the canals are to be terminated by 
successive circumferences. We proceed to indicate in more detail the 
construction of the canals. 

Let the canal in the neighborhood of the point an be bounded by 
the lines y— ± 5n, with Sw>0. Let R be the region formed by the 
interior of the circles Cn together with the canals, and let the point 
w = 0 correspond to the point f = 0 when R is mapped onto |f| < 1 
with directions at the origins unaltered. When Si approaches zero, the 
kernel of the variable region R in the sense of Carathéodory (op. cit., 
p. 75) is precisely the interior of Co, independently of the values of 
Ô2, S3, • • • . The function w=fo(Ç) which maps |f| < 1 onto R with 
/o(0) =0 , /o (0) > 0 , approaches the function w = 0o(f) = f which maps 
|f| < 1 onto R with </>0(0)=0, 0O '(O)>O; convergence is uniform in 
every |f| ^ r < l . The conjugate of the origin with respect to R is 
— 2 [/o (0) ]2//o" (0), which approaches the conjugate of the origin with 
respect to the interior of Co, namely the point at infinity. Conse­
quently it is possible to choose Si so small independently of S2, S3, • • • 
that the conjugate of the point WQ = 0 with respect to R lies exterior 
to the circle \w\ = 1 . 

Introduce the notation for the center of Cn: wn = 3(2n— l ) / 2 n . 
When Si and S2 approach zero, the kernel of the variable region R 
is the interior of Ci independently of S3, S4, • • • , if the region 
|f I < 1 is mapped onto R by the function w=/i(f) with /i(0) =wu 

ƒ1 (0) >0 . Then the function w=fi(Ç) approaches the function 
w = 0 i ( f )=Wi+f /2 which maps |f| < 1 onto the interior of C2 with 
0i(O) =wi, <$>[ (0) > 0; convergence is uniform in every |fI ^ r< l .The 
conjugate of W\ with respect to R is —2 [ƒ/ (0 ) ] 2 / / / ' (0), which ap­
proaches the conjugate of W\ with respect to the interior of &, namely 
the point at infinity. Consequently it is possible to choose Si and S2 

so small independently of S3, S4, • • • that the conjugate of the point 
W\ with respect to R lies exterior to the circle \w\ =2. The number Si 
has been subjected to a similar restriction in connection with the con­
jugate of the point w0, and is to be subjected to no further condition. 

We continue now in the way thus commenced. The numbers 8n and 
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ôn+i are to be chosen independently of ôw+2, Sw+3, • • • in such manner 
that the conjugate of the point wn with respect to R lies exterior to 
the circle \w\ = 2 n + 1 ; each Sw (for n> 1) is subjected then to two con­
ditions, and the numbers 8n can be determined in succession. The 
resulting region R is a Jordan region. The sequence wn approaches the 
boundary point w = 3 of R, and the conjugate of wn with respect to R 
becomes infinite with n. Theorem 3 is established. 

HARVARD UNIVERSITY 

ON THE ORDER OF THE PARTIAL SUMS OF FOURIER 
POWER SERIES1 

OTTO SZÂSZ 

Dedicated to L. Fejér on his sixtieth birthday. 

Let f(x) be a Lebesgue integrable function, and denote the partial 
sums of its Fourier series by sn(f\ x). It is well known that sn = o(n) 
uniformly2 in x. Recently W. C. Randels3 gave an example showing 
that this estimate cannot be improved. The same conclusion can be 
drawn from a note by E. C. Titchmarsh;4 and A. Zygmund in his 
review of Randels' article (Zentralblatt für Mathematik, vol. 18, p. 
353) pointed to another device, using convex coefficient sequences, 
which would establish the same fact. 

In this note a simple construction is given, using a sequence of 
polynomials in the complex variable z. This leads to a sharper result 
showing that even for Fourier power series (that is, a power series 
considered on its circle of convergence and integrable) the estimate 
cannot be improved. Moreover, an example F(z) ==^Lin=ocnZn is given 
which has the additional property that F(z)/(l—z) is a generalized 
Fourier power series on \z\ = 1. 

We start with a sequence of polynomials of increasing degree 
Pn(?) = (£?~oCnvZv)2 =Ylï™oanVzv having the following properties: 

1 /•» T m 

(1) — I | Pn(e") U* = £ I c„, |2 = 1, 
2w J _*• „«o 

1 Presented to the Society, April 15, 1939. 
2 In fact, if Co, Cu • • • are the Fourier coefficients, then cn-»0. H e n c e ^ o l CA —o(n). 
3 W. C. Randels, On the order of the partial sums of a Fourier series, this Bulletin, 

vol. 44 (1938), pp. 286-288. 
4 E. C. Titchmarsh, Principal value Fourier series, Proceedings of the London 

Mathematical Society, (2), vol. 23 (1925), pp. xli-xliii. 


