
NOTE ON COMPLEMENTED MODULAR LATTICES 
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1. Introduction. In this note we study those elements of a com­
plemented modular lattice whose complements are unique. We show 
that these elements are simply the neutral1 elements of the lattice. 
I t is also shown that an element with unique complement decomposes 
the lattice into a direct product of sublattices.2 Hence if the lattice is 
indecomposable, each element not the null or unit element must have 
at least two complements. In case the lattice is of finite dimensions 
these results give a new proof of the Birkhofï-M enger3 theorem that 
a complemented modular lattice of finite dimensions is a direct prod­
uct of projective geometries and a Boolean algebra. 

Although the existence of points and divisor-free elements is postu­
lated, no chain conditions are assumed and the proofs are purely com­
binatorial. 

2. Notation and definitions. Let © denote a closed, complemented, 
modular lattice with null element z and unit element i. Complements 
of a e © will be denoted by a', a", • • • and have the property that 
(a, af)—iy [a, a'] = z. We assume that each a^z divides a point p, 
and that each b^i is divisible by a divisor-free element q. I t follows 
that a 3 by a^b, implies the existence of a point p c [a, br\ and of a 
divisor-free element q D (&, a') such that a op, b$p and q D bt q $ a. 
Hence each element of © is the union of the points which it divides 
and the crosscut of its divisor-free divisors. 

If S is a set of elements of ©, u(S) (k(S)) will denote the union 
(crosscut) of the elements of S. If a z © we denote the set of points p 
(divisor-free elements q) such that aop (qoa) by Pa ((?«). If @ is the 
direct product of the sublattices ©i and ©2, we write © = ©iX©2. 

An element a of © is said to be neutral if (a, [b, c]) = [(a, &), (a, c) ] 
all by c e ©. I t is easily shown4 that a is neutral if and only if [a, (ô, c) ] 
= ( [a* b]y [ay c]) a l l by c t © . 

3. Properties of elements with unique complements. We need the 
following lemmas : 

1 See §2. 
2 Added in proof: Theorems 3.1 and 4.1 are given by J. von Neumann in his 

Continuous Geometries (Princeton). 
3 Garrett Birkhoff, Annals of Mathematics, (2), vol. 36 (1935), pp. 743-748; 

K. Menger, Annals of Mathematics, (2), vol. 37 (1936), pp. 456-481. Professor Birk­
hoff has informed the author that he has also obtained Theorem 4.2. 

4 O. Ore, Annals of Mathematics, (2), vol. 36 (1935), pp. 406-437. 
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LEMMA 3.1. If an element a of © has a unique complement a' and 
aoby then a' = [ft', (ft, a')]. 

PROOF. I t suffices to show that [ft', (ft, a')\ is a complement of a. 
Now 

[a, [ft', (ft, a')]] = [V, k (», <*')]] = [V, (ft, [a, a'])] = [ft, ft'] = s. 

Also 

(a, [ft', (ft, «01) => ^ [ft', (ft, <0l) = [(ft, ft'), (ft, aOl = (», «0 » a'. 

But (a, [ft', (6, a ')]) =>#• Hence (a, [ft', (ft, a ')]) D (a, a') =*• 

LEMMA 3.2. If an element a of © Aas a unique complement af and 
if p is a point of ©, /Âew either aDp or a' Dp. 

PROOF. Suppose that a$p and a''$p. Let p''= [a, (a7, £ ) ] . Then 
ƒ>' is a point and p'^p since otherwise a3 |> contrary to assumption. 
Now let q be a divisor-free element such that g $ £ ' but qDp. (Such 
a g always exists since p = k{Qp), and if q D p' all q t Qp, then pDpr and 
p=p', which is impossible.) Now since g is a complement of p', we 
have a ' = [g, (£', a') ] by Lemma 3.1. But then 

<*' = [<?,(£>')] = fo(*'.M*'.*)])] 
= [g, (a', a), (a', *)] = [?, (a', *)] = (*, [g, g*]) op, 

contradicting a' $p. 

THEOREM 3.1. Let a have a unique complement a1 and let a (a') de­
note the sublattice of all elements x (y) such that aox {ar Dy), Then 
@ = aXa ' . 

PROOF. We show first tha t x = ([a, x], [a'f x]) any x t ©. By 
Lemma 3.2, x = (u(S), u(S')) where 5 (S') is the set of points divisi­
ble by x and a (a'). Hence S = P[a,x] and S' = P[a>,X]- Thus # = ([#, x], 
[a'> x]). If x = (xi, X2) where aoxu a'DX2, then x\—\ay x] and 
X2=[a,

1 x] by the modular condition. Hence every element of © 
is uniquely expressible as a union of elements of a and a'. Clearly 
(x, y) = ((xu yi), (x%, 3/2)) and [x, y] = ([a, x, y], [a', x, y]) = ([xu yi], 
[^2,3^2]). 

If pi and p2 are distinct points, the element (p\, p2) is called the 
"line" joining pi and p2. We have then the following result: 

THEOREM 3.2. An element a e © has a unique complement a' if and 
only if every line joining points of a and af contains no other points. 

PROOF. Let a have a unique complement a'. Then © = aXct' by 
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Theorem 3.1. Let aDp and a' Dp''. If (p, p') Dpi where pi is distinct 
from p and p', then a$pi since otherwise aD(p, pi) Dp' and 
[a, a'] Dp', which is impossible. Similarly a'$ pi. But this contra­
dicts Lemma 3.2. On the other hand let a have a second complement 
a" zindlet a'D p',a"$p',a Dp and (a", p')D p.Thenpi= [a", (p',p)] 
is a point distinct from p and p'. Clearly (p, p') Dpi. 

The relationship of unique complements to projective geometry is 
clearly brought out by the following corollary to Theorem 3.2: 

COROLLARY. Every line of © contains at least three points if and only 
if each element not the null or unit element of © has at least two comple­
ments. 

If © is of finite dimension, the Birkhoff-Menger representation 
theorem follows immediately from Theorems 3.1 and 3.2. 

4. Distributivity. In this section we show that the elements with 
unique complements are the neutral elements of the lattice. We prove 
first a lemma : 

LEMMA 4.1. If a has a unique complement a', then a is the unique 
complement of a'. 

PROOF. Suppose that a' has a second complement a\. Then a Dai 
by Theorem 3.1, and hence a = ai by the modular condition. 

THEOREM 4.1. An element a has a unique complement if and only 
if it is neutral. 

PROOF. Let a have a unique complement a'. Then [a, (b, c)] 
= [ai, (fa, ci) ] = [a, (fa, ci) ] = (fa, ci) = ( [a, b], [a, c]) by Theorem 3.1. 
Hence a is neutral. Conversely let a be neutral and let a ' be a com­
plement of a. Suppose that a' has a second complement ai. Then 
a = (a, [ai, a'])=[(a, ax), (a, a')] = (a, ai) and hence a Dai. Also 
a= [a, (ai, a')] = ([a, #i], [a, a']) = [a, ai] so that aiDa. Hence a = ai. 
Thus a is the unique complement of a' and hence a' is the unique 
complement of a by Lemma 4.1. 

I t is interesting that Theorem 3.1 gives almost trivially the theo­
rem that if © is finite dimensional and complements are unique, then © 
is a Boolean algebra. 
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