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According to Schottky's theorem, a function f(z), which is regular 
and different from ± 1 for \z\ < 1 , and for which ƒ (0) =a, is bounded 
in absolute value for \z\ ^ r b y a number depending only on a and r. 
The asymptotic behaviour of the bound in Schottky's theorem for 
a—» oo has been studied by Ostrowski,f and numerical bounds have 
been given by Pfluger % and Ahlfors;§ but the numerical bounds which 
have been given are not asymptotically equal to the best bound. 

Let K(ay r) be the best bound possible in Schottky's theorem, in 
the form stated above. The purpose of this paper is to obtain, in as 
simple a manner as we can, estimates for K(a, r) which are close 
enough to make it possible to derive from them the asymptotic for
mula 

8K(a, r)~ (8 | a | )<1+^/(1^> 

for a—»oo and fixed r. In fact we shall show that 

&K(o, r) — 10 < (8 | a | + lO)*1^'*1-*, 

while 

8K(a, r) + 10 > (8 | a | — 10)u+r)ia-r)9 

provided S\a\ —10 > 0 ; and from these inequalities the asymptotic for
mula evidently follows. 

We assume as known that it is possible to map a triangle with zero 
angles, and sides orthogonal to the unit circle, conformally on the 
upper half-plane, the mapping being continuous on the boundary; the 
vertices of the triangle may be taken into 1 , - 1 , and oo. (The map
ping function is essentially an elliptic modular function.) The 
mapping function may be continued analytically throughout the 
unit circle by means of the Schwarz reflection principle, since this 
circle may be completely covered by triangles obtained from the 
original triangle by successive reflections on the sides. For later pur-

* Presented to the Society, April 15, 1939. 
t Asymptotische Abschdtzung des absolutes Betrages einer Funktion, die die Werte 0 

und 1 nicht annimmt, Commentarii Mathematici Helvetici, vol. 5 (1933), pp. 55-87. 
J Über numerische Schranken im Schottky'schen Satz, Commentarii Mathematici 

Helvetici, vol. 7 (1935), pp. 159-170. 
§ An extension of Schwarz's lemma, Transactions of this Society, vol. 43 (1938), 

pp. 359-364. 

907 



908 R. M. ROBINSON [December 

poses, it is important to notice that if we start with a triangle contain
ing the origin, a point of that triangle by successive reflections is 
always taken further from the origin, since it is always reflected from 
the exterior to the interior of a circle orthogonal to the unit circle.* 
Each triangle is mapped on an upper or lower half-plane, the entire 
circle | z\ < 1 being mapped on a Riemann surface with branch points 
of infinite order at 1, — 1 , and oo. The mapping function is regular 
for | s | < 1 , and different from ± 1 . The inverse function is many-
valued, but has no singularities except at 1, — 1, and oo. 

By means of a linear transformation of the unit circle into itself, 
we can insure that the mapping function has any desired value, differ
ent from ± 1 , at the origin. Let T(z) = T(z, a) be the function thus 
obtained, for which T(0) = a and T'(Q) > 0 . If we form the function 
T(z, a) with a =/(0) , and let T~l{w) denote the inverse (many-valued) 
function, then the function g(z) = T~l(f(z)) will be regular for \z\ < 1 , 
since f(z) is different from ± 1 ; hence g(z) will be single-valued, as 
soon as a definite branch of T~1(w) is chosen, which we shall do by 
imposing the condition g(0) = 0 . Then g(z) satisfies the conditions of 
Schwarz's lemma, so that | g(z) | ^ | z\. Since f(z) = T(g(z))f this leads 
to the conclusion that, for any f unction f(z) with ƒ(())=#, which is 
regular and different from ± 1 in the unit circle, we have 

| ƒ(*) | ^ max T(z', a) for \z\ ^ r. 

This is Schottky's theorem; and in fact the bound is exact, since 
T(z, a) is an admissible function. The expression on the right is then 
equal to K(a, r). In estimating this maximum, z' may be restricted 
to the intersection of the triangle (of our set of triangles covering the 
unit circle) containing the origin, and the circle \z'\ ^r. For the circle 
| z ' | ^r is covered by the reflections of this part of the triangle con
taining the origin (since a point of the triangle outside of the circle 
is never reflected into the circle), and at two corresponding points, 
the values of T(zr, a) are equal or conjugate. 

For the computation, it is convenient to map the unit circle | z\ ^ 1 
on an upper half-plane $£*è0. Since the bound to be computed is the 
same for any value of a as for its conjugate, we may suppose for con
venience that 3?# ̂ 0 , so that the triangle which contains the origin 
corresponds to an upper half-plane in the mapping w=T{z, a). We 
may then suppose that this triangle goes into the triangle — 1 S SKf = 1 > 
|f | ^ 1 , in such a way that the vertices f = 1, — 1 , °°, correspond to 
w = l, — 1 , oo, respectively. The function T(z, a) then goes over into 

* This fact is used in the last sentence of the following paragraph. 
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a function A(f) which maps the triangle — 1^9tf = l, | f | = l , o n the 
upper half-plane $w ^ 0, in such a way that 1 , - 1 , and oo, are fixed. 
Let 3 = 0 go into the point f = b\ then A(b) — T(0, a)=a. The circle 
121 = r goes over into a circle whose highest point is at a distance y$b 
from the real axis, where y is an abbreviation for ( l + r ) / ( l — r ) . The 
value of i£(a, r) is then less than or equal to the maximum of | A(f ) | 
for f in the triangle and $ÇSy$b, and this maximum is attained on 
the upper boundary 3 f = 73»6, since | A(f) | increases upward on the 
vertical sides. On the other hand, the region over which we had to 
compute the maximum of | A(f) | contains a point of 3>f = y$b. Hence 
K(ay r) is included between the minimum and maximum of |A(f)| 
for f in the triangle and 3 f = 73&- (That the problem can be reduced 
to this has been recognized by others; but they seem to have over
looked the simple method of calculating a bound given below.) 

Let 0(f) be the function which maps our triangle in the f-plane 
onto the region 3w = 0, \w\ = 1, in such a way that 1 , - 1 , and oo are 
fixed. Then A(f) = [0(f) + l /0( f ) ]/2. We note further that A(f) maps 
the arc of the circle | f + l | = 2 extending from 1 to —l+2i (which 
may be characterized as a circular arc through the vertex 1 which is 
orthogonal to the opposite side of the triangle as well as to the real 
axis) onto an arc of the same circle extending from 1 to —3. For if 
we transform the mapping by taking the upper half-plane into the 
unit circle by a linear transformation, in such a way that the vertices 
of the triangle go into points which are equally spaced around the 
unit circle, the corresponding statement will be evident from the sym
metry of the figure. From this we conclude that A(f ) maps the region 
- l ^ a t f g l , | f + l | ^ 2 , onto the region $w = 0, | w + l | = 2 , the 
points 1 and oo being fixed, and — 1 + 2 i going into —3. That is the 
same as saying that A(2£ — 1) takes the region 0 = 9îf = 1, | f | — 1 , into 
the same region in the w-plane, the points 1 and oo being fixed, and i 
going into —3. But 20(f)2 —1 does exactly the same, hence A(2f — 1) 
= 20(f)2 — 1. Thus both A(f) and A(2f — 1) are expressed in terms of 
0(f), and hence brought into relation to each other. 

By means of the function / = ie*V2i the half-strip - 1 = 9îf = 1, 3 f = 0 
is taken into the region 3 / = 0, \t\ = 1. This transformation takes our 
triangle in the f-plane into a region in the upper half of the /-plane, 
bounded by the part of the real axis to the left of — 1 and the part 
to the right of 1, and by a curve C joining — 1 and 1, whose distance 
from the origin is always between 1 and eTl2. We may regard A(f) as 
a function of /, for t in the part of the upper half-plane outside of C, 
and continue across the real axis by the Schwarz reflection principle, 
so that A(f) is a regular function of /, for t outside of C and its reflec-
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tion in the real axis, except for a simple pole at oo .* It is clear from 
the symmetry that the expansion of A(f ) in the neighborhood of / = oo 
is of the form A(f) =ct+ci/t+Cz/tz+ • • • , all the coefficients being 
real, and the first coefficient c being positive. From the functional 
relation obtained above, the coefficients c1 ci, £3, • • • could be calcu
lated. However, we need only the value of c. Now if we replace f 
by 2f — 1, then t is replaced by t2, so that besides the relation A(f)^ /c/, 
we have also A(2f — l)~ct2. But from the equations expressing A(f) 
and A ( 2 f - 1 ) in terms of <KD> we have A(?)~0(f ) /2 and A(2 f -1 ) 
~2<t>{Çy. Eliminating the $(f) leads to the conclusion that ct2~&cH2

f 

from which we find c = l / 8 . From this we see that 8A(f) — t—*0 for 
/—»oo. Thus the maximum of | 8A(f) —/| will occur for / on the curve 
C. Since the curve is symmetric with respect to the imaginary axis, 
the part in the first quadrant is taken into the segment from 0 to 8 by 
the function 8A(f). It is clear then that | 8A(f) - / | ^ ( 6 4 + ^ ) 1 / 2 < 1 0 
for t on C and hence for all values of / considered. Now | /| =e(irl2)W, 
so that 

8 I A(f) I - 10 < g('/2)3r < 8 I A(f) I + 10 

for all points f of our triangle. Hence for 3$* — Y3fr> we have 

8 I A(f) I - 10 < *(*/»3r = [e(*i*W]y < [S | A(J) | + lO]*, 

and, provided 8|A(6)| - 1 0 > 0 , 

8 I A(f) I + 10 > *(W»)3r = [e(rl*)&]y > [8 I A(b) \ - 10]*. 

Remembering that A(6) = a , and that K(a, r) is between the maximum 
and minimum of IA«01 f o r 3 r = 7 3 & , we see that these inequalities 
yield the desired bounds for K(ay r). 
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* The function A(f) is evidently a single-valued function of t in the region men
tioned, since in continuing across either segment of the real axis we obtain its value 
at a point / of the lower half-plane as the conjugate of its value at ~t. 


