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1. Simultaneous representation of primes. Two numbers m and M 
are said to be represented simultaneously by a ternary form 

(1) ƒ = ax2 + by2 + cz2 + 2ryz + 2sxz + 2txy 

and its reciprocal f 

(2) F = AX2 + BY2 + CZ2 + 2RYZ + 2SXZ + 2TXY 

if there exist integers x, y, z and X, F, Z such that f(x, y, z) = w , 
F(X, Y,Z)=*M and xX+yY+zZ = 0. 

The case of interest is that in which representation is not only 
simultaneous but also proper. J One is usually interested in the exist­
ence of such numbers m and ikf, fulfilling certain conditions, with the 
view of a suitable normalization of the given form ƒ and its recipro­
cal ,F. § 

In this paper we will require that m and M be a pair of simultane­
ously and properly represented distinct odd primes or doubles of such 
primes and derive a normalized form permitting some interesting ap­
plications. We note that the first coefficient a oî f and the third 
coefficient C of F are represented simultaneously and properly and 
express our result as the following theorem. 

THEOREM 1. If f is a ternary quadratic form with a properly primitive 
reciprocal and if ƒ is (i) properly or (ii) improperly primitive, then 
it is equivalent to a form f such that (i) a' and C' are distinct odd primes 
not dividing 20A, or (ii) a' = 2a and a and C' are distinct odd primes 
not dividing 2ŒA. Here a' is the leading coefficient of ƒ', and C' is the 
third coefficient of the reciprocal F' off'. 

We note that since F is properly primitive it represents properly 
an integer prime to any assigned integer and hence to 2ÖA. If QA is 
odd, then F represents properly an integer congruent to 1 (mod 4) 

* Presented to the Society in part, April 9, 1937, under the title On certain rational 
transformations. 

f See Dickson, Studies in the Theory of Numbers, University of Chicago Press, p. 
12. 

t Ibid. 
§ Dickson, ibid., pp. 15-17 and 54-60; P. Bachman, Die Arithmetik der quad-

ratischen Formen, vol. 1, p. 64; H. J. S. Smith, Collected Works, vol. 1, pp. 455-509. 
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and one congruent to 3 (mod 4). Hence we may assume that C is 
prime to 212A and, if OA is odd, 

(3) C s Q (mod 4). 

Then the binary form 

(4) xP = ax2 + Itxy + by2, ab - t2 = OC, 

is properly or improperly primitive according as ƒ is properly or im­
properly primitive. 

For, in view of a well known property of determinants, 

(5) aS + tR + sC = 0, tS + bR + rC = 0, sS + rR + cC = ÖA. 

The g.c.d. g of a, /, & divides ab — / 2 =QC and also the determinant 
Z} = Q2A of/. Since C is prime to 2QA, g divides 0 and is prime to C. 
Then by (5i) and (52), g divides sC and rC, and hence 5 and r. There­
fore, since g divides 12, it divides cC and hence c by (53). Thus g di­
vides the g.c.d. of the coefficients a, • • • , t of ƒ, and, since ƒ is primi­
tive, g = l. Hence \{/ is primitive. 

If ƒ is properly primitive, so is \{/. The determinant of ƒ is 
abc+2rst — ar2 — bs2 — et2 — Ö2A. Let fl2A be even. If yp were improperly 
primitive, then c would be even by the above and ƒ would be im­
properly primitive. If OA is odd, QC=1 (mod 4) by (3), whereas if x// 
were improperly primitive, we would have Q,C = ab — / 2 = —1 (mod 4). 

If ƒ is improperly primitive, xp is also improperly primitive since 
it is primitive. 

If xp is properly primitive, it represents properly an odd prime a,\ 
not dividing 20AC. If \p is improperly primitive, it represents properly 
an integer ai = 2a such that a is an odd prime not dividing 20AC* 
Hence \p is equivalent to a form xpi with a,\ as the leading coefficient. A 
transformation carrying \p into xpi carries ƒ into fi = aix2+ • • • . The 
contragredient (defined by the transpose of the reciprocal of its 
matrix) transformation which carries F into the reciprocal Fi of / i , 
leaves C unaltered, f 

The binary section V = BiY2+2RiYZ+CiZ2, (Bi&-R? =Aai), of 
F\ is properly primitive, since Ci = C is odd and since the g.c.d. g of 
B\, Ru C\ divides Aai and hence is equal to unity by virtue of the 
choice of C ( = Ci) and a,\. Thus, as above, the properly primitive 
binary ^ represents properly on odd prime C' not dividing QAai.J 

* H. Weber, Mathematische Annalen, vol. 20 (1882), pp. 301-329. 
t Dickson, ibid., p. 16. 
{ One could have appealed to a well known result in quadratic form theory and 

assumed from the beginning that C was a prime. 
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Thus ^ is equivalent to a binary form ^ i with C as the coeffi­
cient of Z2. A transformation carrying ^ into ^l\ carries F\ into 
F' = • • • + C Z 2 , and its contragedient transformation carrying/i into 
ƒ', whose reciprocal is F', leaves the leading coefficient a\ unaltered. 
Thus a\ — af, and f is a form required in Theorem 1. 

If the reciprocal F of ƒ is improperly primitive, then ƒ is properly 
primitive and, by virtue of the symmetry of the relation of reciproc­
ity, Theorem 1 may be applied with ƒ and F interchanged. We obtain 
thus the following result. 

THEOREM 2. If f is a properly primitive form with an improperly 
primitive reciprocal, then it is equivalent to a form f such that C' = 2y 
and a' and y are distinct odd primes not dividing 2Î2A. Here, as before, 
a' is the leading coefficient off and C' the third coefficient of the recip­
rocal F' off. 

2. Reduction to sum of squares. We will assume now that the lead­
ing coefficient a o f / a n d the third coefficient C of F a r e either distinct 
odd primes not dividing OA or doubles of such primes. 

Multiplying both members of (1) by a we obtain 

(6) af(x, y, z) = (ax + ty + sz)2 + QCy2 - 2tiRyz + tiBz2, 

where 

(7) ab - t2 = OC, ac - s2 = QB, ar - st = - QR. 

Next, multiplying both members of (6) by C and noting that by de­
terminant theory 

(8) BC - R2 = Aa, 

we get 

(9) Cafx, y, z) = C(ax + ty + sz)2 + ti(Cy - Rz)2 + tiAaz2. 

We now write 

(10) G(X, Y, Z) = CX2 + OF2 + ÛAaZ2 

and speak of the so-constructed form G in the independent variables 
X, Y, Z as a form associated with ƒ. 

THEOREM 3. Let f be a primitive ternary quadratic form, and let F 
be its reciprocal form. Employ the notation of (1) and (2). Let the lead­
ing coefficient a of f and the third coefficient C of F be either odd primes 
or doubles of such primes. Then if f represents an integer m, the associ­
ated form G in (10) represents aCm and in case Î2 = C==0 (mod 2) then 
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Y=Z (mod 2). Conversely if the form G represents a Cm and if Y=Z 
(mod 2) when A = C = 0 (mod 2), then f represents m. 

If the representation of aCm by G is proper, then that of m by f is 
likewise proper. The converse of the last statement holds with reservation; 
namely y if a proper representation x, y} z of m by f is given, then the 
related representation X, F, Z of aCm by F is also proper if a and C 
are prime to m.* 

The first part of the theorem is obvious in view of (9). We assume 
next that G represents aCm. There exist, therefore, integers X, F, Z 
such that 

(11) aCm = CX2 + tiY2 + QAaZ2. 

I t follows from (11) that OF2 + S2AaZ2s=0 (mod C). But by (8), 
A a = -R2 (mod C). Thus ti(Y2-R2Z) = 0 (mod C), and, multiplying 
through by - 1 and factoring, we get Q,{RZ+ Y)(RZ- F) = 0 (modC). 
Since C is an odd prime not dividing 12 or a double of such a prime, 
since Y=Z (mod 2) if C==Œ==0 (mod 2) by hypothesis, and since R 
is odd in the latter case in view of the choice of a, we have either 
RZ+Y=0 or RZ—Y=0 (mod C). Thus, there exists an integer y 
such that either 

(12i) RZ + F = Cy 

or 

(122) RZ - Y = Cy, 

that is, such that 

(13) ±Y = Cy-RZ. 

Substituting (Cy — RZ)2 for F2 in (11), we get, in view of (8), 

aCm = CX2 + ti(Cy - RZ)2 + Q(BC - R2)Z2 

= CX2 + tiC2y2 - 2QCRyZ + ttCBZ2, 

whence 

(14) am = X2 + aCy2 - IttRyZ + ÜBZ2. 

From (14) it follows that 

(15) X2 + QCy2 - 2tiRyZ + tiBZ2 = 0 (mod a), 

* For any particular m this condition may be fulfilled (save possibly for a factor 2) 
by a suitable choice of a and C. 
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and since, in view of (7), £2C= — /2, ^lR^tsf H2?=—s2 (mod a), we 
have 

X* - t
2y2 - 2/s;yZ - s2Z2 s 0 (mod a), X2 - (ty + sZ)2 s 0 (mod a). 

Since a is an odd prime or a double of such a prime, either X — ty — sZ = 0 
or — X — £y — sZ = 0 (mod a). Thus, there exists an integer x such that 
either 

(16i) X — ty — sZ = ax 

or 

(162) — X — ty — sZ = ax, 

that is, such that 

(17) ± X = ax + ty + sZ. 

Substituting (ax+ty+sz)2 for X2 in (14) we obtain, in view of (7), 

am = (ax + ty + sZ)2 + (ab - t2)y2 + 2(ar - st)yZ + (ac - s2)Z2, 

whence 
m = ax2 + by2 + cZ2 + 2ryZ + 2sxZ + 2/x;y. 

We now let 

(18) z=Z. 

Then/ (x , 3/, z)=m, and, since # and y determined by (12) and (16) 
are integers and Z is one by assumption, the integer m is represented 
b y / . 

From (13), (17) and (18) it follows that every common prime fac­
tor p of x, y, z divides X, F, Z. Therefore if X, F, Z are relatively 
prime, then so are x, y, z. The converse of the first statement is true 
for every prime p not dividing either a or C. For, if such a prime p 
divides X, F, Z, then by (13) it divides y} by (17) it divides x, and 
by the choice of z in (18) it divides z. Thus if x, y, z are relatively 
prime, then the only possible common factors of X, F, Z are divisors 
of a or C. But by virtue of (11) and the choice of a and C such com­
mon factors divide m. Hence the reservation of the converse of the 
second part of the theorem is sufficient. 

3. Application to universal forms. Universal ternary quadratic 
forms were studied by Dickson,* who found the necessary and suffi­
cient conditions that a form 

(19) $ = ex2 + gy2 + hz2 

* Dickson, ibid., p. 21. Also this Bulletin, vol. 35 (1929), pp. 55-59. 
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should represent all integers, by Oppenheim* who studied forms with 
cross products and their equivalence to certain type forms, and by 
the present author, f who obtained conditions for universality of a 
ternary form in terms of its generic characters. 

In this section we propose to show how by means of Theorem 3 
and the normalization in §1, the criteria for universality for general 
forms with cross product terms may be deduced directly from the in­
formation available for forms of type (19). 

The universality criteria in terms of generic characters run as fol­
lows. J 

THEOREM A. Let ƒ be a properly primitive, indefinite, classic,§ ter­
nary, quadratic form with reciprocal F and determinant D. The necessary 
and sufficient conditions that ƒ be universal are 

(20) D = 2k+1 or 2(2* + 1), 0 = ± 1 

where k is an integer, and, for every odd prime p dividing A = D 

(21) (F\p) = ( - 0 | # ) . 

THEOREM B. Let fi be a primitive, indefinite, non-classic, ternary, 
quadratic form. Consider an improperly primitive form f= 2/i. Let F 
be the reciprocal and Î2, A the invariants off. Then j \ is universal if and 
only iff=2fi satisfies the following conditions: 

(22) Ö = ± 1, 

the characters off are 

(23) ( - 1 ) C * - D / 2 = ( _ i ) (û+i ) /2 ? (F\p) = (-a\p) 

for every odd prime p dividing A = D, and, in case 4 divides A, 

(24) ( - l ) ^ 2 - D / 8 = 1 . 

Noticing that conditions of Theorem A and relations (8) and (7i) 
imply that the conditions of the above mentioned theorem of Dickson 
are fulfilled for the associated form G of ƒ (see (10)), we may at once 
conclude that these conditions are sufficient. 

To achieve the same for Theorem B, however, we need some addi-

* Oppenheim, Quarterly Journal of Mathematics (Oxford), vol. 1 (1930), pp. 179-
185. 

t Quarterly Journal of Mathematics, vol. 4 (1933), pp. 147-158. 
| Ibid., pp. 147-148. There was a misprint in the statement of condition (1.51), 

our (230. 
§ A classic form is one in which the coefficients of the cross products are all even. 

A form is non-classic if some or all of these coefficients are odd. 
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tional information about the form $ in (19). We will proceed therefore 
to study forms of the type (19) and procure information permitting 
us not only to draw the conclusions of Theorem B, but also those of 
Theorem A. The procedure will be somewhat simplified by taking ad­
vantage of the fact that when the necessary conditions are imposed 
upon ƒ the associated form G is of type (19) with g = 1. 

We first prove the following lemma. 

LEMMA 1. Consider a form 

(25) $(#, y> z) — ex2 + y2 + hz2 = y2 + </>(#, 2), eh — d, 

such that 
(26) eh<0and (e, A) = l, 
(27) —h and —e are quadratic residues of e and h respectively. 
Then 

(28) $ ~ $1 = 2xy + y2 - dz2. 

From (26) and (27), in view of a theorem due to Legendre* it fol­
lows that there exist integers X, /x, v relatively prime in pairs such that 
$ ( \ , M, „ ) = o . Hence, by (25), 0(X, v) = -ju2, (X, v) = l. Therefore, 
there exists a transformation carrying <j> into an equivalent form 

(29) <f>(x, z) = ( - M2, M, N), M2 + Nn2 = - eh = - d.. 

Henceforth the proof proceeds as in a similar lemma proved else­
where, f 

If we let s = 0, y = 1 or 2 in (28), we get 

(30) $1 = 2 x + 1 or 4 ( # + 1). 

Next if d = 2 (mod 4), take 2 = 1, y = 2. Then *i = 4 ( * + l ) + d . If J is 
odd take 2 = 1, y = l and x = 2u or 2u + l according as d=4:h — l or 
4A + 1. Then $i = 4(w — A)+2. In both cases $1 is equal to any 4 /+2 
by choice of y and u respectively. We thus obtain a second lemma. 

LEMMA 2. If d in (28) is odd or a double of an odd integer, then the 
form 4>i represents all integers. Should rf = 0 (mod 4), $1 would not be 
universal but would still represent all multiples of 4 by (3O2). 

We are ready now for the proof of Theorems A and B. 
It is not difficult to see that the conditions (20)-(21) and (22)-(24) 

are necessary. J 

* For exposition see Dickson, Introduction to the Theory of Numbers, chap. 8. 
t Quarterly Journal of Mathematics, vol. 4 (1933), §3, p. 150. 
J Ibid., §§ 4 and 7. 
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We modify slightly the following portion of the proof just referred 
to. 

If A = 4 (mod 8), the only residues of QAaz2 modulo 64 are 0, AAa, 
32, where SlAa^S (mod 16). If C==-S2+4 (mod 8) holds, we show 
as before that CX2+QY2^8, 24, 32, 40, 56 (mod 64). Then the only 
possible residues modulo 64 which are congruent to 0 (mod 8) are 0, 16, 
48 and those obtained by adding to them 0, 32, and OAa. But in this 
manner we obtain only seven residues 0, 16, 48, 32, OAa, 16 + OAa, 
48 + QAa which are congruent to 0 (mod 8) out of the possible eight. 
Therefore, C = - « (mod 8) and (24) holds. 

The sufficiency of the conditions (20)-(21) and (22)-(24) follows at 
once from the two lemmas of this section, in view of Theorem 3 and 
Theorems 1 and 2. 

If ƒ is universal, so is —ƒ, and if conditions (20)-(21) or (22)-(24) 
hold for one, they also hold for the other. One of these has A <0 , fl >0 . 
We may assume then that 0, = + 1 . Then (10) becomes 

(31) G(X, Y, Z) = CX2 +Y2 + AaZ2. 

Thus G is of type (25). Since ƒ is indefinite, we have (26i). Condition 
(262) holds by the choice of a and C. Next, condition (27) holds in 
view of (8), and (272) holds by (7i), (20i)-(21) or (23)-(24), according 
as ƒ is properly or improperly primitive. Therefore, by Lemma 1, 
G^$>i. If ƒ is properly primitive, then d~AaC is odd or double an 
odd integer and hence (Lemma 2) $x and thus G represents all in­
tegers and therefore all multiples of aC. Then, by Theorem 3, ƒ repre­
sents all integers. 

If ƒ is improperly primitive, d=AaC = Q (mod 4). By Lemma 2, 
<ï>i represents all multiples of 4. That is, <3?i and therefore G represents 
all even multiples of aC. Then, by Theorem 3, ƒ represents all even 
integers, and hence f/2 is universal. 

In closing, it may be of interest to mention a theorem first conjec­
tured and proved by Dickson:* 

THEOREM C. Every universal, classic or non-classic, ternary quad­
ratic form is a zero form. 

A proof of this theorem in a more general setting was given by 
Albert.! 

ST. LOUIS UNIVERSITY 

* L. E. Dickson, Studies in the Theory of Numbers, Chicago, 1930, p. 17. Also cf. 
Dickson, Modern Elementary Theory of Numbers, Chicago, 1939, chap. 8. 

t A. A. Albert, this Bulletin, vol. 39 (1933), pp. 585-588. 


