ON ADDITION CHAINS
ALFRED BRAUER

We consider a set g¢p=1<a1<a:< - - - <a,=n of integers such
that every element @, can be written as sum a,+a, of preceding ele-
ments of the set. Such sets of integers have been called “addition
chains (Additionsketten) for #»” by A. Scholz.} For example, for
n=06060,

1,2, 4,8, 16, 24, 40, 80, 160, 320, 640, 664, 666
forms an addition chain with » =12; the same holds for
1,2,3,6,9, 18, 27, 54, 81, 162, 324, 648, 666.

In any case, we must have ¢, =2 and a2 =3 or 4.

By the length /=I(n) of %, Scholz understands the smallest I for
which there exists an addition chain aq, a4, - - - , a;=n.

The following question leads to addition chains: The least positive
residue of ¢ (mod m) (¢, m, n given integers) is to be formed using the
smallest possible number of multiplications. Then I(%#) multiplica-
tions will always suffice.

A. Scholz published the following inequalities for /(%) in the form
of problems:

(1) m+1=in) <2m for 27+ 1< n 2™, m21,
(2) l(ad) = U(a) + UD).

In (1), we have I(#) < 2m whenever m > 2; moreover,

3) 12mt1 — 1) <= m + I(m + 1).

In connection with (3), Scholz surmises that (1) can be improved
generally, He further raises the question of whether or not the in-
equality

log 2

4 1 < lim sup

I(n) < 2,
n-w  logn

which easily follows from (1), can be improved.
It is easy to prove the formulas (1) and (2). I cannot decide
whether (3) is always true. In the following, I will show that

2mt — 1) =m+ Fm + 1),

1 Jahresbericht der deutschen Mathematiker-Vereinigung, class I1I, vol. 47 (1937),
p. 41.
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where I*(m +1) is the minimal length, not of all, but only of certain
addition chains. Further, I will prove by elementary methods that
for sufficiently large »

1 2 log 2 }

log n
i(n) < {1
log 2 log log » (log 7)1—oe2

This is better than (1). It entails the following relation
log 2

lim

In) =1,
nw lOg n

which, of course, is better than (4).

Let ag, ai, - - -, a;=n be an addition chain for %, 2741 <5 < 2m+1,
Then a)=2a)_1, WZ=1,2, - - -,1). Since a1 =2, we have ¢; 22!, n L2},
2m+41 =2 m-+1=I. This proves the first half of (1).

To prove the second part of (1), I(n) =2m, suppose first that
2m+41<n< 27+, We write # as a binary number

mo= 201 2 2y Ky < s < g

We have here at most m+1 terms, £ <m -1, and v, =m. We begin the
addition chain with ay=1, a:=2, a.=4, - - -, an=2", and take then

(gt = 27 271, gy = 27 4 21 22,
Gpimr = 27 4 20 4 - 20 =,

This actually is an addition chain, and we see that I(n) <m+k—1
<2m. The equality /(n) =2m is possible only if k=m 1,

n=14+2+224 ... 4 2m=2ml 1,

This case will be discussed in the last paragraph of this page.
For n=27+! we form the addition chain

(5) 1)2) 22)“ : ,2m+1.
Here [=m+1, hence [(2"t)=m+1 < 2m.
Let 1, a1, a2, - - -, a-=a be an addition chain for ¢ with »=I(a),
and let 1, by, by, - - -, bs be one for b with s =1(b). Then
1, a1, -, a, asby, a:by, - - - | ayds

forms an addition chain for a,b,=ab, since b,=b,+b, implies a.b,
=a,b,+a.b.. The number of terms after 1 in this chain is #+s5; hence
l(adb) £r+s=1(a)+1(b). This proves (2).

By a special addition chain for the number #» we mean an addition
chain for which, for all p, and for some o
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a = @y + a,, 0Z20c=p—1=21—-1,

holds. Let /*(z) be the minimal length of all special addition chains
for n. Then I(n) £I*(n). The chains used in the proof of the second
part of (1) are special chains. Hence, it follows from this proof that
I*(n) = 2m. The equality sign is here impossible except for n =2m+1—1,
In order to prove that l(z) <2m whenever m > 2, it suffices to show
that

(6) I2mH — 1) £ Q™ — 1) S m 4+ Fom + 1),

for1,2,4,5,6,7,---,m+1 is a special chain of length m —1 for

m—+1,s0 ¥*(m+1)=m—1. Let

(7 1=ap,a, - -,ar=m+1

be a minimal special addition chain for m41, k=/*(m+1). We form
20— 1 =120 —1=320@2—1 ... 2a—1

and multiply 2¢—1 successively a,.1—a, times by 2, (k=0,1,2, - - -,

k—1). We then obtain
(@1 —a0) +(aa—a) + - + (e — ary) =m
further numbers. We thus obtain the integers

® 1,2,20 — 1,2(29 — 1),22(22t — 1), - - -, 20—a1(Q01 — 1) Doz — 1,

2(292 — 1)’ ceey Zaa—az(zaz —_ 1), cee, 20k—akm1( 20k — 1)’ Qak — 1,
We state that these numbers form a special chain for 2¢¢ —1 =2m+1—1,
This will be proved if we show that

20 — 1 — Zax—ax—l(z"x—l — 1) = 20y~ — 1

is an element of (8) for k=2, 3, - - -, k. But this is true, since (7),
as a special addition chain, contains a,—a,_1. The length of the chain
(8) is k+m =1*(m-+1) +m, and this proves (6).

We show now that A. Scholz’ conjecture, that (1) and (4) can be
improved, is actually true. We prove the following theorem:

THEOREM. If r is any positive and s any not negative integer, then
9) n) £ (r+ s+ 27 =2 for 2r* < m < 2rs+D,

ProoF. When r=1, this follows from (1); we therefore take r>1
and fixed. I state now that we can form an addition chain for # which
contains at most (#+41)s+27—2 terms, and which begins with the
terms ap=1,a1=2, as=3, - - -, ay—2=27—1. For s =0 this is true be-
cause the integers 1, 2, - - -, 2*—1 form an addition chain for every
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n<2" (the integers n+1, n+2, - - -, 27—1 may be included in the
chain). Assume now that the assertion is not true and take s to be
the smallest value for which the statement does not hold for # with
2rs<p <2760 We divide # by 27:

(10) n=a?2 +b, 0<b< 2.

Then 27¢-D <a < 27, and since our statement is supposed to be true
for s—1 instead of s, there exists an addition chain a, a1, as, - - -,
Ga_1, @ =a for a which has at most (*+1)(s—1)+27—2 terms, and
which starts with 1, 2, - - -, 2r—1. Because of (10), this chain con-
tains b for 5>0. Then ay, a1, - * - , Ga—y, @, 2a, 22, - - -, 27a, 27a+Db is
an addition chain for #» which contains the first 2"—1 integers. The
length equals at most

r+DG—1D+2r—24+7r+1= (4 1)s+ 27— 2.

This gives the desired contradiction; therefore the statement holds
for all values of s. The proof yields an easy method for constructing
the addition chains.

From relation (9) it follows that s=< (log #)/7-log 2; hence I(n)
=(r+1)(log n)/(r log 2)+27—2. If now 2" <n <27+, this yields

. 1\logn
1y I(n) £ min {(1 + —) + 27 — 2}.
re=1,2,c,m ¥ log 2

For instance, if we set 7= [log log #]+1 for =3, then (11) gives
> log n
loglogn / log 2

1 log n
= (1 + ) ._I_ Qeloglogn - log2
loglogn / log 2

+ 2 loglogn+1

I(n) < (1 +

logn 1
= <1 + ——————) + 2(log n)loe?,
log 2 log log »

log n 1 2 log 2
(12) I(n) < ——{1 + + }
log 2 loglogn  (log n)i—los?

This inequality can easily be improved since the expression between
the braces in (11) takes on its minimum for 72-27= (log #)/(log 2)2.

On the other hand, it follows from (1) that I(n) = m > (log #) /(log 2)
—1. This, in connection with (12) yields lim, /(%) (log 2)/(log n) =1.
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