
A TENSOR ANALYSIS FOR A Vk IN A 
PROJECTIVE SPACE Sn* 

V. G. GROVE 

1. Introduction. In this paper we shall show how an intrinsic tensor 
analysis may be developed for a curved space or variety Vk of k di­
mensions immersed in a projective space Sn of n>k>l dimensions. 
For n^k — 1 there apparently exists no covariant quadratic differen­
tial form; so Fubini's method of studying such a variety fails. Or, 
as Lane suggests,! Fubini's method fails either due to the lack of a 
quadratic differential form, or to the lack of an absolute calculus for 
an n-ary £-adic form except when p = 2. 

However, it is well known that an absolute calculus can be de­
veloped without the use of a quadratic form by making use of certain 
generalized Christoffel symbols. J 

These three indexed symbols enable one to introduce into the geo­
metrical theory of a variety the geometry of paths, affine and "pro­
jective" connections. In that manner certain tensors and vectors 
arising in those theories can be expressed in terms of tensors and vec­
tors arising in the study of the variety from the point of view of 
classical projective geometry. In particular, the Weyl projective cur­
vature tensor is expressible in terms of tensors arising in the classical 
geometric theory of a variety Vk. 

Finally, we show that a generalized Riemann space of k dimensions 
with a fundamental symmetric connection characterizing the space 
may be considered as being immersed in a projective space of 
n = k(k + 3)/2 dimensions. This theorem is an evident generaliza­
tion of the fact that a Riemann space may always be considered 
as immersed in an euclidean space of sufficiently high dimension. 

2. The fundamental differential equations. Let the homogeneous 
projective coordinates x\ (i = 1, 2, • • • , n + V), of a point P in Sn be 
given as analytic functions of exactly k parameters 

(1) x* = xl(ul, u2, • • • , uk). 

The totality of such points P we shall call a variety Vk-
The functions x and dx/dup may be interpreted as the homogeneous 

projective coordinates of k + 1 points. These points determine a cer-

* An address delivered before the Cleveland meeting of the Society on November 
25, 1938, by invitation of the Program Committee. 

fLane [l, p. 292]. 
Î See, for example, Eisenhart [2]. 
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tain linear space Tk of k dimensions which we shall call the tangent 
space of Vk at x. 

Let (S)y\ (s = l, 2, • • • , r — n — k), be r(n + l) other functions of 
k such that the determinant 

(2) ( dx dx dx \ 

does not vanish. Then the n + 1 functions x and the r(w + l) functions 
(S)y satisfy a system of differential equations of the form 

d2x 0 dx 
+ papOO + (e)Dap (8)y, 

duaduP dW> 
(3) 

d (8)y p dx 
= (S)Ma [- (s)qax + (st)Ea (t)}'-

dua dup 

We shall use the usual umbral convention : any index repeated in 
any symbol or group of symbols denotes summation over that index. 
The Greek letters a, j3, y, • • • , p, a shall be understood to have 
the range from 1 to k, the letters i, j from 1 to n + 1, and the letters 
s, p, /, m from 1 to r. 

From (3) we note that L^ = Lp
fioty pap = ppaf (S)Dap = (s)Dpa. More­

over any other solution X\ (,)F* of (3) is of the form 

(4) X = a)x , ooF = a}- (S)y , a = | a,-| ^ 0. 

Hence the coefficients of system (3) are invariant under the projec­
tive transformation (4). 

The coefficients of system (3) are not independent. They satisfy 
certain integrability conditions. These conditions are 

Papy = Rapy + paySp — pa$y 
P P 

= (,s)Dap (s)My — (s)Day (8)Mfiy 

Pap,y — Pay,P = (s)Çp (s)D<xy — (s)Çy (s)Dap, 

(s)Dap,y — (s)Daytp = (ts)Ep (t)Day — (ts)Ey (t)Dap, 
P P P P 

,-v (s)Ma,p — {s)Mp,a = ba (S)qp — dp i8)qa 
\d ) p p 

+ (st)Ep {t)Ma — (st)Ea (t)Mp, 

(s)qa,p — (s)qp,a = (st)Ep (t)qa — (st)Ea (t)qp 

+ paa (s)Mp — ppa ( « )M a , 

(st)Eaip — (st)Ep>a — (sp)Ep (pt)Ea — (sp)Ea (pt)Ep 

+ (t)Dap (s)Mp — (t)Dtf (a)Ma, 
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wherein 

(6) Ra&y = ~~~T ^ « 7 Lafi \ LayLa^ — LapLay. 
dw duy 

The other abbreviations occurring in (5) will be explained at a later 
time. 

By direct calculation from the integrability conditions or by proper 
changes in notation in a paper by Lane,* we find that 

(7) -— [Lpp + (ss)Ep\ = —- [Lpa + (s8)Ea\. 
dua bw 

Hence there exists a function ƒ such that 

àf P 
(8) fa = — Lp0 + (ss)Ea. 

du* 
3. Tensors on Vk* The variety Vk is not changed if on the differ­

ential equations (3) we make the transformations 

(9) ua = u«(ül, ü2, • • • , ük), A = 

(10) x = \x, 

S oc 

( i l ) (s)y = (5)<9p-—h <.)0s + a8* coy» -4 = | a a J ^ o . 
duP 

Under (9) the differential equations (3) assume a form wherein the 
new coefficients Lap are given by 

- P r x duv du8 d2ux Idûp 
(12) Lap = \Ly8 + — • 

Moreover the coefficients pa$, (S)Da0 transform by (9) like the covari­
ant components of tensors of the second order; and (s)ga, (St)Ea trans­
form like the covariant components of vectors (or tensors of the first 
order); and (S)M£ transforms like the components of a mixed tensor 
of the second order. Accordingly, we call them the contravariant and 
covariant components of tensors of the kind and order indicated by 
their indices. 

We may readily verify that P ^ , R^y are components of tensors 
of the fourth order, contravariant of the first, and covariant of the 

dua 

5*0; 

X ^ O ; 

* Lane [3, p. 796]. 



388 V. G. GROVE [June 

third. We shall call the tensor P^y the projective curvature tensor of Vk 
relative to the space Nr of points x, ^y. 

Unfortunately these vectors and tensors have no geometric signifi­
cance since, although invariant under the projective transformation 
(4), they are not invariant under (10) and (11). To this end we nor­
malize the coordinates x themselves, and the space of points Nr de­
termined by x and ^y. 

4. A semi-canonical form of the differential equations. Differential 
geometers have used various methods for reducing the differential 
equations, forms, or power series arising in their respective theories 
to canonical forms. In the case k = 2> r = \ (that is, in the case of an 
ordinary surface in three dimensional projective space S3), Fubini 
normalized the coordinates x by a special transformation (10) which 
made the ratio of the discriminants of certain covariant differential 
forms (one quadratic and one cubic) a constant.* In the case k = n — l, 
r — \ (that is, in the case of a hypersurface in Sw), Hlavat^ used one 
covariant quadratic form, covariant differentiation with respect to 
the form, and the properties of affine connection to derive a canonical 
form of his differential equations. \ 

Wilczynski, starting with a defining set of differential equations, 
observed the effect of transformations of the arbitrary parameters in 
the differential equations which left invariant the configuration he 
was studying, and then by a judicious particular choice of transfor­
mation reduced his set to a canonical form. J He also always computed 
a complete system of invariants and covariants for his configuration. 
A variation of his method for k = 2, r = l consists in starting with a 
Taylor's expansion of one nonhomogeneous projective coordinate in 
terms of the other two, and then, by making use of available trans­
formations of the arbitrary parameters, reducing the power series to 
a simple or convenient canonical form. A weather eye was always 
held out, however, for a form to which a more or less simple geometri­
cal significance could be attached. This method § has been used ex­
tensively by Lane, Stouffer, Green, and others. 

We use an adaptation|| of the method used by Grove for reducing 
our defining differential equations to a canonical form. We observe 
first that the functions ƒ, defined by (8) transform by (9), (10), (11) 
into fê by the formula 

* Fubini and Cech [4, 5]. 
t HIavat? [6]. 
t Wilczynski [7, 8, 9], 
§ Lane [l0]. 
|| Grove [ l l ] . 
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dup r d A i 
(13) ft = ƒp + log . 
K J J dû' L dw> A\wj 

Let R be a function of k with the following properties : 
(a) R^O, (b) the transform R of i? by (9), (10), (11) is given by 

(14) R = WAR/A. 

Now define the function p9 by the expression 

(15) p.=f* + — logR. 
du* 

The point whose homogeneous projective coordinates are defined by 
the formula 

(16) 

transforms by (9), 

(17) ft = 

(10), 

du> 
X — 

dû( 

Hence if we choose X so 

we make 

(18) 

and from (17) 

dx 
ra = h p«x 

du« 
(11) into ft where 

' f dx / d \ "1 

' LOW \ dup / J 

that 

d 
— logX = pp, 
dup 

dx 
rff = — , 

du* 

dup 

fà — X Y o . 

dû* 

Hence r„ is an intrinsic covariant vector. 
The form of (18) of course depends upon the choice of the func­

tion R. In particular, the function 

/ dx dx dx \ 

has the desired properties (a) and (b), and could be used in deriving 
(18). The function R may be chosen conveniently to the problem at 
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hand. The coordinates x so normalized cause the points whose co­
ordinates are dx/dup to lie in a covariant flat space Rk-i of k — 1 dimen­
sions lying in the tangent space TV 

Now if in the transformation (11) we choose (8>0p and (S)$ to satisfy 
the differential equations 

u (s)v ff p cr a p . <r 
= (s)Ma — ( s ) 0 Lap — (s)4>à<x + ((st)Ea — (s )# (t)Dap)(t)6 , 

dua 

( 1 9 ) » A 
O (s)<p 

* = (s)<?a — (s)QPpap + ((st)Ea — (s)#P (t)Dap) (t)<l>, 

whose integrability conditions appear among those of system (3), we 
cause (3) to assume a form for which 

c«)Af« = <«)£« = 0, 5 = 1, 2, • • • , r; a, p = 1, 2, • • • , k. 

Moreover, we may choose A of (11) so that (S8)Z£a=0. Hence by 
proper choice of the space Nr of points x, ^y we may cause the system 
(3) to assume a semi-canonical form 

d2x p dx 
= La8 h pa0X + (s)DaB (s)y, 

duaduP duP 
(20) 

d v y j? 

characterized by 
P à 

Lpa H log R = (Ss)Ea = 0. 

The space Nr of r dimensions determined by x and ^y giving rise to 
the form (20) may be called a projective normal space. Its precise na­
ture depends upon the particular choice of the function R. 

The form of (20) is preserved under all transformations of the form 

u<* = ua{ül, ü2, • • • , ük), x = ex, c a cons tant , 

(s)y = a8t (t)y, A a constant. 

5. Covariant differentiation. The tensor pa$oi the semi-canonical 
form could be used as a basis for an absolute calculus. We notice, 
however, that the functions Lp

aB transform under (9) by the same law 
of transformation as that by which the Christoffel symbols trans­
form. Hence these functions can be used as a basis for covariant dif­
ferentiation. 
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As denned* by Veblen and Thomas, "covariant differentiation is a 
process by which from a given tensor, there may be found a new 
tensor with one more covariant index." The definitions we use are the 
usual ones, and bear a close analogy to covariant differentiation in 
euclidean space S%. 

We denote covariant differentiation with respect to L ^ by a com­
ma. In particular, 

Oi) 
dx 

dua ' 

d2x p dx 
(22) x.ap = - Lor 

duaduP dup 

But from (20), x,ap may be written 

(23) Xtafi = papX + (s)Dap («)^. 

Hence, similar to euclidean geometry of n dimensions, the second co-
variant derivative of x gives a point {or a line through x) in the unique 
normal space. 

Now if one differentiates the equations (3) covariantly with respect 
to LJp, one finds the integrability conditions in covariant derivative 
form. These conditions are given by (5) wherein the comma is to be 
interpreted as the symbol of covariant differentiation. Using system 
(20) instead of (3), we may write the integrability conditions in the 
simple form 

p 
Pafry — 0 , P<xp,y ~~ P ay ^ = 0 , 

(24) (s)Dapty — (s)Day,fl = (ts)Ep (t)Day — (ts)Ey (t)Da09 

(st)Ea,P — (st)Ep,a = (sp)Ep (pt)Ea — (sp)Ea (pt)Ep. 

6. Affine and "projective" connections. The functions L ^ may be 
used to define an affine connection f on Vk since by (12) they trans­
form according to the law of such a connection. J Since the functions 
Lp

ap are invariant under the projective transformation (4) in 5 n , what­
ever may be valid for a given Vk in Sn is equally valid for any projec­
tive transform of Vk in Sn. We may therefore instigate a study of the 
geometry of paths on Vk from the point of view of classical differential 
geometry by the use of this connection. 

* Veblen and Thomas [12, p. 569]. 
t Such a connection is said to be of zero torsion, since Lap = Lpa. The term "tor­

sion n was introduced by Eddington [13]. 
$ Schouten [14], 
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A curve on Vk will be said to be a path if the functions ua = ua(t) 
defining the curve satisfy the differential equations 

d2up p dua dut 
(25) + Lie = 0. 

dt2 dt dt 
It may readily be proved that the osculating plane of the curve 
ua = ua(v) at x intersects the space Nr in a line if and only if the func­
tions ua{v) satisfy equations of the form 

d2up p dua du$ dup 

(26) h La$ = 6 ; 6 arbitrary. 
dv2 dv dv dv 

But by proper choice of the function t — t{v), we may write (26) in 
the form (25). Curves whose osculating planes intersect a given space 
Nr in lines are said to form an axial system.* In a sense, therefore, 
the paths determined by the connection Lp

aB play the role of geodesies on 
a variety Vk in euclidean space Sn since the osculating planes of such 
geodesies intersect the unique normal space in lines. 

Consider now the so-called "projective" connection f 

(27) n;„ = L:0 -
k + 1 k + 1 

In view of the conditions imposed on the differential equations (3) to 
reduce them to the form (20), we may write (27) in the form 

(28) 

wherein 

i C = Li? + à'a —T log R' + ô'e log R' 
dw du" 

R' = tf-l/U-l). 

Hence U^B defines the same set of paths% as Lp
aB. Therefore U^ defines 

a projective connection in the sense of Thomas and, moreover, is projective 
in the sense of classical projective geometry. 

If we let Wa8y be the curvature tensor for the connection n ^ , and let 

^O«0p 

k- 1 

the Weyl projective curvature tensor Wp
aBy is defined by 

* Bortolotti [15]. 
t Thomas [l6]. 
% Thomas [16] and Bortolotti [17]. 



1939] TENSOR ANALYSIS FOR A Vk 393 

(29) W'afiy = 33a/37 + V«T ~ Ô 7 ^ • 

We find that 
p <T p a p a p <T 

/ ™ \ TT7-P ^ .^ . àpRay* àyRafa a àpPaya àyPafa 

(30) Wa(3y = Rapy + ~ ~ " ~ = P a^y + ~ " ~ ~ ' 
k — 1 k — 1 k — I k — 1 

Hence 

wp
a0y = o . 

It follows, therefore, that the choice of the space Nr giving rise to the 
semi-canonical form (20) implies that the variety F&, (&>2), is pro-
jectively plane.* Moreover, for k>2 there is a preferred choice of 
parameters ua such that L^ are zero. Hence with k > 2 , and by proper 
choice of the transformation (10) we may cause system (20) to as­
sume the form 

d2x d (S)y 

duaduP dua 

7. Other connections on Vk- By proper, but not unique, choice 
of the functions (s)0

p, (s)0 in transformation (11), and with certain 
limitations on the tensors (S)A*/3, we may make 

(32) (ss)Ea = (t)Ml = 0, a = 1, 2, 3, • • • , k; t = 1, 2, • • • , r. 

Under these conditions, the Weyl "projective" curvature tensor is 
still given by (30). Under the conditions (32) we may write (30) in 
the form 

(^^) Wapy = (s)Da<r (s)Qpy 

wherein 
p o p e 

nfa / n/r
p *° i /r

p , ^ ( « ) ^ ^ (s)My 
i*)UPy = ô£ (s)My — ô 7 (a)M|8 H — • 

k — 1 k — 1 

The Weyl projective curvature tensor vanishes for k = 2. Moreover, 
we may show that the geometry of paths under the conditions (32) 
possesses an invariant f integral of the form 

(34) fR-Hu ldu* • • • duK 

Similarly, the geometry of paths, based on the conditions giving rise 

* Bortolotti [17]. 
t Veblen [18]; Eisenhart [19]. 



394 V. G. GROVE [June 

to the semi-canonical form (20), also possesses an invariant integral. 
For a general connection Lp

ap based on the defining system (3), 
the projective connection n ^ transforms by (11) into n ^ by the for­
mula 

(35) 

wherein 

(36) (s)QaP<r 

p p <T 

na/3 = na/3 + (S)d (s)Ç 

P <><* (s)Ar/3 
— 0a (s)Vap —-

Ô/3 (s)Da(r 

k+1 T + r * 
Hence the geometry of paths based on the projective connection n ^ is in­
dependent of the space Nr if and only if the tensors (S)Qap* vanish', that is, 
if and only if the variety Vk is a linear space. 

8. The parallel displacement of Levi-Civita. Consider given the 
contravariant components of a vector \p and a curve C with paramet­
ric equations ua = ua(t) on Vk. If the components Xp satisfy the differ­
ential equations 

d\p
 D a du13 

(37) — + 0 —- = 0, 
dt dt 

it is said that the vector has suffered a parallel displacement along C. 
If (37) is satisfied for all curves C through x on Vk, then 

(38) X'« = + L«,A = 0, 
dua 

and it is said of the field of contravariant vectors that they are parallel 
with respect to any curve. 

Now consider any point z whose coordinates are determined by the 
expression 

dx 
(39) vz = fix + \p h a8 (S)y. 

dup 

As x moves along a curve Cx (ua = ua(t)) on Vk, z moves along a curve 
Cz on a variety V{ . The tangent to Cz a t z is determined by z and by 
the point defined by the expression 

d(vz) d(nx) dx fd\p p a duP' 
— 1 1_ £~A 

dt dt dup L dt 
(40) 

P a dun 

r /das \ IduP 
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Hence the tangent to Cz at z and the tangent to Cx at x are coplanar 
if and only if 

d\p
 p a du13 

(41) 
das duP 
— + ((tS)Epat + X« (.)£<*) —- = 0. 
a/ a/ 

If equations (41) hold, we may say that Cx and Cz are in relation C, 
a S0r/ of generalization of the transformation of Combescure. If (41) is to 
hold for all curves on Vk, then Xp and a8 must satisfy the equations 

p d\p p ff 

A,a == T" l-jaaK = U, 
dua 

(42) 

h (ts)Eaat + X' (,)£«* = 0. 
du01 

The tangents to any curve on Vk intersect the tangents to the corre­
sponding curves on V{. We may say that Vk and Vi are in relation C. 
Granted that the first of equations* (42) has solutions, the integra­
bility conditions of the last of (42) follow from those of system (3). 

The first of (42) has the "trivial" solution Xp = 0. Then the tangents 
to the corresponding curves on Vk and VI are coplanar if and only 
if as satisfies the equations 

da8 

(43) + (tS)Eaat = 0. 
dua 

The integrability conditions of (43) follow from those of (3). But if 
(43) is satisfied, the line xz passes through a fixed point. We shall say 
that Vk and V£ are in the relation of a radial transformation. If & = 2, 
r = 1, and the varieties Vk and VI are ordinary surfaces in 53, then 
the two surfaces are in the relation of a radial transformation as the 
term is usually understood. 

9. Conclusion. Finally, in conclusion, let there be given a general­
ized Riemann space f Sk the coordinates of whose points are 
U , U , * * " , U k. Let there be given a fundamental affine connec­
tion A ^ determining the structure of the space. Suppose, moreover, 
that A«£ is a symmetric connection and that under the transformation 

ua = ua(û\ û2, • • • , ük) 

* Meyer and Thomas [20]. 
t Thomas [21 ] ; Hlavat? [22]. 
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the functions A„p suffer the usual transformation 

-a r x duy du8 d2ux -]düP 
(44) A^ = A7s + —-

L dû" d0 dûadûPjdux 

of such connections. The structure of the space Sk is equally as well 
determined by a system of paths on Sk^ua = ua(t), where the functions 
ua{t) satisfy the usual differential equations of such paths, namely 

d2up a du01 du? 
(45) + A«0 = 0. 

dt2 dt dt 
Let the space Sk be mapped on a variety Vk immersed in a projec­

tive space Sn of n = k(k + 3)/2 dimensions. Then the n + 1 homogene­
ous projective coordinates of a point P on Vk are expressible as 
functions of u , u , * * * , u k. Let (S)3> be the homogeneous projective 
coordinates of r = n(n + l)/2 other points in Sn such that 

R ( dx dx dx \ 

x ' ^ ' M - - - ' ^ ' w y ' m y ' - - - ' ^ y ) * 0 -
Then the functions x and ^y satisfy a system of equations of the 
form (3). 

By a transformation of the form (11) we may make 

(46) Lap + (S)0 (s)Da$ = A«3, 

since the rank of the matrix ((S)Dap) is r. Hence we may cause equa­
tions (3) to assume the form 

d2x p dx 
= Aajs h papX + (s)Daj3 (S)3>, 

duadut du*> 
(47) 

d (S)y p dx 
= (s)Ma h (s)qaX + (st)Ea {t)J. 

dua dup 

With Thomas we may describe the "projective" theory of connections 
as the study of all possible affine connections. From this point of view 
the study of equations (46) for all possible choices of the space Nr of 
points x, (S)y (that is, of all possible choices of (S)6

p) is the projective 
study of connections in the symmetric case. 

Moreover, under the transformation (10) the coefficients A^ trans­
form by (10) according to the formula 

A^ = A-lp — &a —- log X — op log X. 
dw dua 
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Hence* A«p defines on Sk the same system ôf paths as do A^. We may 
state our result in the following form : 

Let the space Sk of structure A ^ be mapped on a variety Vk in a 
projective space Sn of n = k(k + 3)/2 dimensions. Then the paths of the 
space Sk map into the curves of the variety Vk whose osculating planes 
intersect an unique space of points Nr of r = k(k + l)/2 dimensions in 
lines. In other words, a generalized Riemann space with a given struc­
ture may be considered as immersed in a projective space of sufficiently 
high dimension. 

In particular, if we first normalize the coordinates x by a trans­
formation (10), and then choose the space Nr of points x, (S)y, we 
may make the connection L^ of (3) assume the form {p>afi} of the 
Christoffel symbols obtained from a so-called fundamental metric 
tensor gap of a Riemann space S&. The space Nr would then be uniquely 
determined by the metric tensor, and any projective transform of Vk in 
Sn would possess the same Riemannian metric. The geodesies from this 
Riemann geometric point of view would be the curves on Vk whose 
osculating planes intersect an unique normal space Nr in lines just 
as occurs in the euclidean geometry of a variety Vk in Sn. 
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