DIVISORS OF SECOND-ORDER SEQUENCES*

BY MARSHALL HALL

1. Introduction. Given a recurrence of second order

$$(1) u_{n+2} = au_{n+1} - bu_n,$$

where a and b are integers, and the initial values u_0 , u_1 (integers) are terms of a sequence (u_n) satisfying (1), it is an interesting problem to determine whether or not a given prime p will divide some u_n of the sequence. Morgan Ward† reduced this problem to the standard problem on recurrences of determining the restricted periods modulo p of (1) and an auxiliary recurrence of second order. His method is somewhat indirect and uses the assumption that μ , the restricted period of (1) modulo p, is even. This paper obtains a similar reduction of the problem by a somewhat more direct method and makes no assumption on μ .

2. Some Exceptional Cases. The appearance of p as a divisor of some u_n evidently depends solely upon the values of a, b, u_0 , u_1 , modulo p. If p stands in certain relations to these numbers, the theory of the sequence (u_n) modulo p is different from the general theory. It is convenient to treat these unusual cases separately, and then exclude them from further consideration.

Case 1. $p \mid a, p \mid b$.

Here $p | u_n$ for $n \ge 2$. Case 2. $p \nmid a, p \mid b$.

Here $u_n \equiv a^{n-1}u_1 \pmod{p}$ for all $n \ge 2$. Hence either p divides all u_n for $n \ge 1$ or none.

Case 3. $p \mid a, p \nmid b$.

Here $u_{2n} \equiv (-b)^n u_0$, $u_{2n+1} \equiv (-b)^n u_1(p)$; and p divides all or none of u_{2n} , and all or none of u_{2n+1} .

CASE 4. $p \nmid a, p \nmid b, p$ divides either u_0 or u_1 .

Then p divides either $u_{n\mu}$ or $u_{n\mu+1}$, where μ is the restricted period of (u_n) modulo p.

CASE 5. $p \mid (a^2-4b), p \nmid a, b, u_0, u_1.$

Then p cannot be 2 since $p \nmid a$. Let $a \equiv 2a' \pmod{p}$, then

^{*} Presented to the Society, April 20, 1935.

[†] M. Ward, An arithmetical property of recurring series of the second order, this Bulletin, vol. 40 (1934), p. 825.

 $b \equiv a'^2 \pmod{p}$, and we consider $u_{n+2} = 2a'u_{n+1} - a'^2u_n$, giving $u_n = a'^{n-1}(a'u_0 + (u_1 - a'u_0)n)$. Now $a'u_0 \not\equiv 0 \pmod{p}$. Hence u_n can be divisible by p if $u_1 - a'u_0 \not\equiv 0 \pmod{p}$, but not if $u_1 - a'u_0 \equiv 0 \pmod{p}$, that is, if $2u_1 - au_0 \equiv 0 \pmod{p}$.

Case 6.

$$p \mid \begin{vmatrix} u_0 & u_1 \\ u_1 & u_2 \end{vmatrix} = -u_1^2 + au_1u_0 - bu_0^2, \qquad p \nmid u_0, u_1.$$

Here

$$\frac{u_0}{u_1} \equiv \frac{u_1}{u_2} \equiv s \not\equiv 0 \pmod{p} \qquad \text{and} \qquad u_n \equiv s^n u_0 \pmod{p},$$

and u_n is never divisible by p.

3. The General Case. The characteristic polynomial of (1), $f(x) = x^2 - ax + b = (x - \alpha_1)(x - \alpha_2)$, has distinct roots, since p does not divide the discriminant $(\alpha_2 - \alpha_1)^2 = a^2 - 4b$. Hence we may write

$$u_n = c_1 \alpha_1^n + c_2 \alpha_2^n$$
, where $c_1 = \frac{u_0 \alpha_2 - u_1}{\alpha_2 - \alpha_1}$, $c_2 = \frac{u_1 - u_0 \alpha_1}{\alpha_2 - \alpha_1}$

In the field $K(\alpha_1)$, which is either the rational or a quadratic field, the conjugate α_2 is included as $\alpha_2 = a - \alpha_1$. In this field let P be a prime ideal dividing p. Now

$$N(P) = p^2$$
 if $\left(\frac{a^2 - 4b}{p}\right) = -1$, and $N(p) = p$ if $\left(\frac{a^2 - 4b}{p}\right) = +1$.

We note that in this field P does not divide either α_1 or α_2 as p does not divide $\alpha_1\alpha_2 = b$, nor does P divide either the numerator or denominator of c_1 or c_2 , as p does not divide $(\alpha_2 - \alpha_1)^2 = a^2 - 4b$ or $(u_1 - u_0\alpha_1)(u_0\alpha_2 - u_1) = -u_1^2 + au_1u_0 - bu_0^2$. This will permit us to take indices of these quantities with respect to a primitive root modulo P.

LEMMA.
$$\mu$$
 has the value $(N(P)-1)/(\text{Ind }(\alpha_1/\alpha_2), N(P)-1)$.

It is well known that μ is the rank of apparition of p in the sequence $u_n = (\alpha_1^n - \alpha_2^n)/(\alpha_1 - \alpha_2)$, that is, the least positive n for which $u_n \equiv 0 \pmod{p}$. For this it is sufficient that $u_n \equiv 0 \pmod{P}$, since a rational number divisible by P is also divisible by p.

This yields $\alpha_1^n \equiv \alpha_2^n \pmod{P}$, whence taking indices, $n \text{Ind } \alpha_1 \equiv n \text{Ind } \alpha_2 \pmod{(N(P)-1)}$, or $n \text{Ind } (\alpha_1/\alpha_2) \equiv 0 \pmod{(N(P)-1)}$. The least positive value of n that satisfies this condition is $(N(P)-1)/(\text{Ind}(\alpha_1/\alpha_2), N(P)-1)$, and consequently μ must have this value.

THEOREM. The number p will divide some u_n of the sequence (u_n) satisfying (1) if and only if μ , the restricted period of (1), divides M, the restricted period of

$$U_{n+2} = (au_0 - 2u_1)U_{n+1} - (u_1^2 - au_1u_0 + bu_0^2)U_n.$$

If $c_1\alpha_1^n + c_2\alpha_2^n \equiv 0 \pmod{P}$, then

$$n\operatorname{Ind}\left(\frac{\alpha_1}{\alpha_2}\right) \equiv \operatorname{Ind}\left(\frac{-c_2}{c_1}\right) (\operatorname{mod}(N(P)-1)),$$

and conversely. Now a congruence $An \equiv B \pmod{C}$ has a solution n if and only if $(A, C) \mid (B, C)$. This becomes

$$\left(\operatorname{Ind}\left(\frac{\alpha_1}{\alpha_2}\right), N(P) - 1\right) \left| \left(\operatorname{Ind}\left(\frac{-c_2}{c_1}\right), N(P) - 1\right)\right|$$

By the lemma

$$\left(\operatorname{Ind}\left(\frac{\alpha_1}{\alpha_2}\right), N(P) - 1\right) = \frac{N(P) - 1}{\mu}$$

The lemma also yields

$$\left(\operatorname{Ind}\left(\frac{-c_2}{c_1}\right), N(P) - 1\right) = \frac{N(P) - 1}{M},$$

since $-c_2/c_1 = (u_0\alpha_2 - u_1)/(u_0\alpha_1 - u_1)$, and $u_0\alpha_1 - u_1$ and $u_0\alpha_2 - u_1$ are the roots of $x^2 - (au_0 - 2u_1)x + (u_1^2 - au_1u_0 + bu_0^2) = 0$, which is the characteristic of the recurrence for U_n . By substitution we obtain as a necessary and sufficient condition that p divide some u_n :

$$\frac{N(P)-1}{\mu} \mid \frac{N(P)-1}{M} \quad \text{or} \quad M \mid \mu.$$

We note that the exceptional cases are those in which p divides any one of u_0 , u_1 , the coefficients of the two recurrences, and the discriminant of (1).

YALE UNIVERSITY