
LINEAR D I F F E R E N T I A L EQUATIONS OF 
I N F I N I T E ORDER* 

BY R. D. CARMICHAEL 

1. Introduction. In this address we shall give such a conspec­
tus of the theory of linear differential equations of infinite order 
as will enable the reader rapidly to orient himself with respect 
to this subject. Neither in the presentation of results already 
developed nor in the bibliographical references (in the foot­
notes) is there any at tempt to attain an exhaustive account. 
The purpose is rather that of a general outlook on the subject 
such as may interest a considerable number of persons and may 
serve as a point of departure for a few investigators who may 
desire to penetrate a relatively new and unexplored domain, the 
importance of which will certainly be more fully recognized as 
the subject is further developed in the next two or three decades. 

In §2 the general nature of the problem of linear differential 
equations of infinite order is indicated partly by means of ex­
amples and partly by means of notions of a general character 
which are intimately associated with the somewhat more special 
problem which is the center of our present interest. In §3 are 
set forth some of the many connections of this problem with 
other matters of more or less wide interest in the field of analy­
sis. A brief account of the present state of knowledge with refer­
ence to linear differential equations of infinite order with con­
stant coefficients is given in §4, while §§5 and 6 treat (but with 
somewhat less fullness) the corresponding matters for equations 
with polynomial and with analytic coefficients, respectively. 
Finally, §7 is devoted to a brief account of some further prob­
lems and connections of the theory of differential equations of 
infinite order. 

2. Nature of the Problem. A typical problem in the theory of 
linear differential equations of infinite order is that of solving 
the equation 

(1) aQ(x)y + ai(x)y' + a2(x)y" + • • • = 0(a?), 

* Retiring address of the Chairman of Section A of the A.A.A.S., delivered 
at St. Louis, December 31, 1935. 
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where </>(x), &o(V), #i(#), • • • are given functions of x subject to 
suitable conditions and where y is the function to be determined, 
the primes denoting differentiation with respect to x. In the in­
vestigation of such equations the unknown function y(x) is 
often required to belong to a particular class of functions such, 
for instance, as the functions of exponential type. 

One may also investigate systems such as the following : 

(2) — = J^AnWyAx) + *<(*), (i = 1, 2, 3, • • • ) , 
ax j=i 

where the ^4's and the <E>'s are given functions and the y's are 
the functions to be determined. 

In the infinite case the analogy between (1) and (2) does not 
seem* to be as close as that between the corresponding equation 
and system in the finite case. Thus, if we consider the special 
system 

dyi 
<*oO) — h ai(x)yi + a2(x)y2 + • • • + an(x)yn + • • • = 0 , 

ax 
dy2 dy3 dyn 

— = yi> -j- = y*> - • • > ~T~
 = yn-i, • • • , 

ax ax ax 
and if we write y for yn, then the functional equation for y may 
be indicated by the following relation which involves a limiting 
process as to n : 

(3) [aQ(x)y^ + a1(x)y^-^+ • • • +an-.i(x)y' + an(x)y]n=„ = 0. 

There is a marked difference between the theories of (1) and (3). 
Systems of equations of the form 

m oo 

(4) S 2 <*ikV(x)yk = <t>i(x), (i = 1, 2, • • • , m), 

have been considered both when m is finite and when m is in­
finite. Systems (2) are capable of obvious generalizations. 

In a few instances linear partial equations of infinite order 
have appeared. Non-linear ordinary equations of infinite order 
have also been investigated to some extent. 

* See T. Lalesco, Journal de Mathématiques, (6), vol. 4 (1908), pp. 125-
202, especially pp. 182-183. 
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For the sake of unity we shall direct our attention mainly 
(but not entirely) to (1) and (4), particularly since by means of 
them we shall be able to set forth that part of the theory which 
up to the present has received the major share of attention. 

Two pioneers in the development of the theory of linear differ­
ential equations of infinite order were S. Pincherle* and C. 
Bourlet,f the priority belonging to the former. But the work 
of Bourlet was independent of that of Pincherle. In fact, the 
two authors approached the problem from quite different points 
of view; but their results overlapped in important ways. Re­
cently P. FlamantJ has further investigated the problem from 
the point of view of Bourlet and Pincherle. Bourlet used the 
term transmutation to denote an operation T which makes a 
given function </>(x), the object of the operation, correspond to 
another function T</>(x), the result of the operation. The trans­
mutation T is said to be distributive if for arbitrary functions 
cj)(x) and \[/(x) and for an arbitrary constant c, we have 

T[j>(x) + *(*)] = T<t>{x) + Txfr(x), T[ccj>(x)] = cT4>(%). 

Pincherle simply calls T a distributive operation. Bourlet in­
troduces at once a certain notion of continuity with respect to 
the transmutation, but his account of the matter is lacking in 
clarity. Both Bourlet and Pincherle insist on the proposition 
that every additive, uniform, continuous, and "regular" trans­
mutation can be represented by a series of the form 

* dnu 
Tu = 2 ^ on fa) ' 

n=0 dxn 

thus bringing the theory of transmutations into intimate asso­
ciation with the theory of differential equations of infinite order. 
Flamant (loc. cit.) has undertaken to subject transmutations 
to a more rigorous analysis than that which satisfied the earlier 

* For Pincherle's contributions to this problem see the outline of his work 
in Acta Mathematica, vol. 46 (1925), pp. 341-362. 

t For Bourlet's work, see especially Annales de l'École Normale Supérieur, 
(3), vol. 14 (1897), pp. 133-190; (3), vol. 16 (1899), pp. 333-375; and the papers 
of Flamant mentioned in the next note. 

% For papers by Flamant, see especially Palermo Rendiconti, vol. 48 (1924), 
pp. 135-208; Bulletin des Sciences Mathématiques, (2), vol. 52 (1928), pp. 
26-48, 77-96, 104-128; Palermo Rendiconti, vol. 54 (1930), pp. 371-413. 
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investigators and in particular to clarify the situation as regards 
the proposition just quoted by giving precise and sufficiently 
general conditions for its validity. He also generalizes the for­
mula by replacing the operation D of differentiation by certain 
more general operations L. 

The particular transmutation Tu, 

Tu = u u' + — u" + • • • + ( - l)w — ^ ( n ) + • • • , 
1! 2! »! 

will bring to notice (see Bourlet, loc. cit., 1897, pp. 174-176) one 
aspect of the difference between equations of finite order and 
those of infinite order. For functions analytic at x = 0 one has 
Tu = u(0). Hence this transmutation makes every such func­
tion correspond to a constant. The inversion of the transmuta­
tion is therefore generally impossible in the domain of functions 
analytic at x = 0; it is only constants which admit inverses. If a 
denotes an arbitrary constant, then the equation Tu = a is a 
linear differential equation of infinite order which is verified by 
the function u = a-\-xf(x), where f(x) is an arbitrary function 
analytic at x = 0. 

A much more instructive example is the following one:* 

yin) 

(i - x)y + y + .. • +——+ • • • = o. 
n\ 

The classic function T(x) satisfies this equation in every region 
of the plane exterior to the circles of radius 1 about the points 
0, — 1 , — 2, • • • , —n, - - - as centers, since for such regions the 
equation (for suitable functions) reduces to the difference equa­
tion y(x-\-l)—xy(x) = 0. But, in a point situated in the interior 
of one of the preceding circles, the development ^yin)(x)/n\ is 
evidently divergent for y = T(x), although the product xT(x) is 
everywhere finite in one of these circles save at the center. 
Therefore the given differential equation is not satisfied by 
y = T(x') in the interior of one of these circles. This circum­
stance is new and is characteristic of linear differential equa­
tions of infinite order. I t is therefore not sufficient to be assured 
that a non-integral analytic function satisfies a linear differ­
ential equation of infinite order in a point in order to conclude 

* See Lalesco, loc. cit., 1908, pp. 194-195. 
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that it satisfies the equation throughout the domain of its exist­
ence. Lalesco (loc. cit.) investigates the problem which is set 
by the existence of such situations as this example brings to 
light. The reader is referred to his memoir for the results. 

3. Connections of the Problem. Pincherle,* in one of his early 
papers, has indicated certain interesting connections of the 
problem of linear differential equations of infinite order. Let 
A (z) denote the function 

oo n 

A(Z) - Z -£r» 
72 = 0 " 

which is regular outside of the circle of radius R about 0 as 
center. Put z = y — x. Then the function A(y — x) is regular 
when \y — x\ >R, and hence when either | y | > | x | + - R or 
\x\ >\y\ +R. Under the first of the last two hypotheses, if 
we take x interior to a circle of radius a about 0 as center and 
y exterior to the circle of radius R+a about 0 as center, then 
we may write A (y — x) in either of the forms 

n=0 (y - x)n+l ' 

= A An(x) 

Ü yn+l ' 
where the A n(x) constitute the system of Appell polynomials with 
the coefficients an (and satisfying the relation AI (x) = nAn-.\(x)). 
Under the second of the hypotheses, if we take y interior to the 
named circle of radius a, and x exterior to the named circle of 
radius R + a, then we have for A(y — x) either the development 
(5) or the development 

(7) A(y-x) = £ y-A^{-x), 
n=o n\ 

where A(n)(z) is the nth. derivative of A (z). 
One now considers the expression 

* Pincherle, Memorie Reale Accademia delle Scienze, Bologna, (4), vol. 9 
(1888), pp. 45-71 ; French translation in Acta Mathematica, vol. 48 (1926) 
pp. 279-304. 

(5) 

(6) 

A(y~ 

A(y 
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(8) A&)= f A(y-x)4,(y)dy9 

where the integration is taken along a line (/) of the y plane, 
and \f/(y) is an analytic function without singularities along (/). 
One distinguishes two cases as follows: 

(a) The line (I) (either finite in length or infinite under suita­
ble conditions) is such that the modulus of each point on it ex­
ceeds R+a. Then, for | x\ <<r, one can admit for A(y — x) either 
of the developments (5) and (6). On putting 

J G)y - x 

one has from (8), in the respective cases, the developments 

(10) AM = £ ^ J *<»>(*), 

A C Hy)dy 
(11) A(\p) = 2^cnAn(x), cn = I — • 

n=o J a) yn+l 

(b) The line (/) is such that all its points are interior to the 
circle of radius a about 0 as center. Suppose that \x\ >R+a. 
For A(y — x) we may then use either of the developments (5) 
and (7). Then from (9) we have, in the respective cases, the rela­
tions 

(12) AW) = ê ^ J *<*>(*), 
00 A^H— x) C 

(13) A^) = YJcl K-—!-, cl = y^(y)dy. 
n-0 »' J (I) 

Now let f(x) be a given function and consider the functional 
equation 

(14) A(t)=f(x). 

The solution of this equation involves the inversion of the in­
tegral in (8). The formulas which have been given show that 
this problem, at least in many of its essential elements, coincides 
with other functional problems as follows: 
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(a) to solve a linear differential equation of infinite order 
with constant coefficients, namely, the equation 

00 a 

(b) to find the development of a given function of x in terms 
of a given system of Appell polynomials; 

(c) to develop a given function ƒ (x) in a series in terms of the 
successive derivatives of a given function A( — x). 

In the paper here cited Pincherle makes an important con­
tribution toward the solution of these problems. He has also 
treated them and other closely related matters in many other 
memoirs whose dates of publication now stretch over almost the 
whole of a half-century period. 

H. T. Davis* has given a method for deriving the Fredholm 
theory from the theory of differential equations of infinite order. 

I. M. Shefferf and others have indicated the close connection 
which exists between the theory of a system of infinitely many 
linear equations in infinitely many unknowns and the theory of 
linear differential equations of infinite order. To pass from the 
latter to the former, when working in the field of analytic func­
tions, one has only to assume a power series expansion for the 
unknown function, substitute into the differential equation, and 
equate coefficients. Conversely, if one is given the system of 
equations 

00 

2 aaJi = °ii (̂  = 0, 1, • • • ) , 
3=0 

where the a a and the c{ are wholly arbitrary, then there exists a 
linear differential equation 

Po(x)y(x) + Pi(*)y'(*) + • • • + Pn(x)y^(x) + • • • = C(x), 

where the expressions 

* H. T. Davis, Annals of Mathematics, vol. 28 (1927), pp. 309-317. 
t I. M. Sheffer, Annals of Mathematics, vol. 30 (1929), pp. 250-264. See 

also, among others, E. Hilb, Mathematische Annalen, vol. 82 (1920), pp. 1-39, 
vol. 84 (1921), pp. 16-30, 43-52, vol. 85 (1922), pp. 88-89; O. Perron, Mathe­
matische Annalen, vol. 84 (1921), pp. 1-15, 31-42; F . Lettenmeyer, Disserta­
tion, Miinchen, 1927, pp. 1-52. 



200 R. D. CARMICHAEL [April, 

00 00 

C(x) = ^2 ckxk and Pi(x) = ^ pik%k 

fc=0 fc=0 

are formal power series in x such that on settingy(x) = ^2jkXk 

and substituting into the differential equation and equating co­
efficients the resulting system is identical with the given one; 
and it is easy to obtain the relations between the p's and the a's 
to effect this formal equivalence. 

D. C. Lewis* developed the theory of infinite systems of ordi­
nary non-linear differential systems of infinite order with appli­
cations to certain second order partial differential equations, 
using for this purpose certain integral forms which are equiva­
lent to the given systems with specified initial conditions. 

In a paper on the Laplace differential equation of infinite 
order, namely, the equation 

00 

]C (ano + anix + an2x
2 + • • • + anpx^)uM(x) = ƒ ( » , 

w=0 

where p is a positive integer and not all the quantities anp are 
zero, H. T. Davisf pointed out that the general theory of this 
equation formally unifies the theories of the following types of 
functional equations where the p%{x) are polynomials of degree 
not greater than p : 

(a) ƒ
i oo m 

]C pi(%)4>i(t — x)u(t)dt = f(x), 
x t = l 

where the cf>i(x) are such that the integrals fx(f)i(s)snds exist for 
all values of n; 

(b) ƒ» 6 m 

2 pi(x)qi(t)u(x + ci)dt == f(x); 

(c) pm(x)u(x + m) + pm-i(x)u(x + m — 1) + • • • 

+ p0(x)u(x) =ƒ(*); 

(d) the Laplace differential equation of finite order. 

These formal equivalences are put in evidence by means of 
expansions in Taylor's series. 

* D. C. Lewis, Transactions of this Society, vol. 35 (1933), pp. 792-823. 
t H. T. Davis, Annals of Mathematics, vol. 32 (1931), pp. 686-714. 
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4. Equations with Constant Coefficients. Here the first prob­
lem is that of solving the equation 

(15) a0y + a±y' + a2y" + • • • = 0(a) , 

where the coefficients av are constants, </>(x) is a given function 
and y(x) is the function to be determined. If y(x) is any solution, 
then the left member of equation (15) must be a convergent 
series ; hence we must have 

(16) lim sup J avy
(p)(x) |1 v 

v= 00 

less than or equal to unity for every admissible value of x. When 
this superior limit is 1 there is uncertainty about convergence. 
Hence in a first study of (15) it seems natural to require that 
the superior limit (16) shall have a value less than 1; and we 
now impose this condition. 

It seems natural also, in a first view of the problem, to attain 
this condition by hypotheses on the av and the y(x) taken sepa­
rately, since the former are known constants and the latter is 
the unknown function. We may naturally bring this about by 
restricting the solutions y(x), which are to be admitted, to func­
tions y(x) such that the superior limit 

(17) lim sup I yV(x)\li' 
p= 00 

shall be finite. Then we are led naturally to the following condi­
tion on the coefficients : 

(18) lim sup I av \
l,v = a < <x> . 

v— 00 

We therefore adopt this condition as one of the basic hypotheses. 
The class of functions y(x) and the basic hypothesis on the 

coefficients av, to which we have thus been led in a natural way, 
have as a matter of fact played a central role in the theory of 
equations of the form (1). 

If y(x) is an analytic function, it is readily proved that the 
value of the superior limit (17) is independent of x. If this value 
is T, we say that y(x) is of exponential type r. 

The most elegant known theorem concerning solutions of 
equation (15) is perhaps the following. 
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THEOREM 1. In the linear differential equation of infinite order, 

(15) a0y + aiy' + a2y" + • • • = 0 0 ) , 

let the coefficients av be constants such that the function F(z), 

(19) F(z) = a0 + a& + a2z
2 + • • • , 

is analytic in the region \z\ ^q, where q is a given positive constant 
or zero, and let <j>(x) be a function of exponential type not exceeding 
q. If F(z) vanishes at least once in the region \z\ Sq, let n be the 
number of its zeros in this region (each counted according to its 
multiplicity) and let P(z) be the polynomial of degree n with lead­
ing coefficient unity such that F(z)/P(z) does not vanish in the re­
gion. If F(z) does not vanish in the region, let P(z) be identically 
equal to 1. When P(z) = l, let Pn„i(z) be identically equal to zero-, 
otherwise let it be an arbitrary polynomial of degree n — \ (includ­
ing the case of an arbitrary constant when n = 1). Then the general 
solution y(x) of (15), subject to the condition that it shall be a func­
tion of exponential type not exceeding q, may be written in the form 

1 C iKO 1 C Pn-i(s) 
(20) y(x) = exsds -\ I exsds, 

2iriJCpF(s) 27riJCp P(s) 
where 

(2i) t(s) = E ^ ~ r -

and where Cp is a circle of radius p about 0 as center, p being greater 
than q and such that F(z) is analytic in the region q>\z\ ^ p and 
does not vanish there. 

If 4>(x) is precisely of exponential type q, then the named solu­
tion y(x) is also of exponential type q. 

If we take P n _i (x)=0 , we have in (20) a particular solution 
of equation (15). On subtracting this particular solution from 
the general solution (20) we have the general solution (of ex­
ponential type not exceeding q) of the homogeneous equation 
obtained from (15) on replacing <jf>(x) by 0. If F(z) does not 
vanish in the region | s | ^ g , the latter solution is identically 
equal to zero. If F(z) does vanish in this region, then the named 
solution of the homogeneous equation is identical with the gene-
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ral solution of the differential equation P(D)u = 0, where D 
denotes the derivative with respect to x. 

I t is desirable to give a proof of Theorem 1. The most elegant 
seems to be the following one, developed by G. B. Lang (in an 
unpublished Illinois dissertation) on the basis of methods which 
have been frequently employed by S. Pincherle over a period 
now stretching to almost fifty years. We present the demonstra­
tion merely in outline. 

We write c/>(x) and y{x) in the forms 

${%) = X s» — > y(x) = Z) u —:• 

Then we have the conditions 

(22) lim sup I sv y
 v S q, Hm sup | tv | ^ q. 

v= 00 p— 00 

Substituting in (15) and equating coefficients of like powers of 
x, we have the necessary conditions 

00 

(23) 2 aJu+v = sv, (y = 0, 1, 2, • • • ) . 

With (j>(x) and y(x) we associate the functions 
0 0 Ç 00 / 

When g{x) is thus defined, subject only to the second relation 
in (22), then every function y{x) of exponential type not exceed­
ing q may be expressed in the form 

(24) y(x) = —- f g(s)e"ds, 

as one may readily verify by aid of the expansion of exs in powers 
of 5. Since y(x) is to satisfy (15), we must now have conditions 
(23). By aid of these conditions it may be seen that the Laurent 
expansion of the function F(x)g(x) — \^(x) in powers of x con­
tains no non-vanishing terms in negative powers of x. 

This suggests that y(x) in (24) be written in the form 

y(x) = I exsds -\ I < 
2riJCpF(s) 2TriJCp F(s) 
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In the fraction in the second integrand multiply both numerator 
and denominator by P(s)/F(s), a function which is analytic and 
does not vanish in the region \s\ ^ p . Then the last integrand 
takes the form A(s)ex*/P(s), where A(s) is analytic and single-
valued in the region \s\ ^ p . Therefore the second integral in 
(25) vanishes when P(s) = l ; otherwise the sum of the princi­
pal parts of A(s)/P(s) at its poles in the region | s\ ^q may be 
written in the form Q(s)/P(s), where Q(s) is a polynomial of 
degree n — 1 at most. If P(s) = l, we still write Q(s)/P(s), but 
understand that Q(s) = 0 in this case. Then from (25) we see that 
the required solution necessarily has the form 

y(x) == I exsds H I exsds. 
2iriJCpF(s) 2iriJCpP(s) 

Since it is easy to verify directly that (20) affords a solution of 
(15), it follows from the result just obtained that (20) affords the 
general solution of (1) subject to the conditions which have been 
imposed. 

Several investigators* have contributed to the development 
of the theory of linear differential equations of infinite order 
with constant coefficients and of systems of such equations. Sev­
eral of the memoirs are devoted to the derivation of results very 
similar to those given in the foregoing theorem; and several 
methods have been given for their demonstration. Both the 
methods and the results for the case of equation (15) have been 

* See, among others, the following: S. Pincherle, Memorie Reale Accademia 
delle Scienze, Bologna, (4), vol. 9 (1888), pp. 45-71; C. Bourlet, Annales de 
l'École Normale Supérieure, (3), vol. 14 (1897), pp. 133-190; S. Pincherle, 
Mathematische Annalen, vol. 49 (1897), pp. 325-382; T. Lalesco, Journal de 
Mathématiques, (6), vol. 4 (1908), pp. 125-202; J. F . Ritt, Transactions of this 
Society, vol. 18 (1917), pp. 21-26, 27-49; F . Schürer, Leipziger Berichte, vol. 
70 (1919), pp. 185-246; H. von Koch, Arkiv för Matematik, Astronomi och 
Fysik, vol. 15, No. 26 (1921), pp. 1-16; S. Pincherle, Acta Mathematica, vol. 
48 (1926), pp. 279-304; N. Wiener, Mathematische Annalen, vol. 95 (1926), 
pp. 557-584; G. Pólya, Göttinger Nachrichten, 1927, pp. 187-195; F . Letten-
meyer, Dissertation, München, 1927, pp. 1-52; I. M. Sheffer, Annals of 
Mathematics, vol. 30 (1929), pp. 250-264, and Transactions of this Society, 
vol. 31 (1929), pp. 261-280, 281-289; G. Valiron, Annales de l'École Normale 
Supérieure, (3), vol. 46 (1929), pp. 25-53; H. T. Davis, American Journal of 
Mathematics, vol. 52 (1930), pp. 97-108; M. Ghermanesco, Bulletin de 
l'Académie Royale de Belgique, vol. 19 (1933), pp. 387-394; G. B. Lang, 
Illinois dissertation, 1935 (unpublished). 
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extended to systems of such equations, or, more precisely, to 
systems of the form (4) in which the coefficients aikV(x) are taken 
to be constants ; and this has been carried out for systems having 
either a finite or an infinite number of equations. This develop­
ment has, in the main, involved only what is a fairly natural 
extension of the results for a single equation. Some complica­
tions have arisen from the presence of exceptional cases, but it 
can hardly be said that they have been of a serious character. 
There has been no important change in the types of the func­
tions appearing in the solutions. 

If one notes the character of the functions which have ap­
peared in these solutions, as indicated for instance by our Theo­
rem 1, he may well be struck by the fact that no real novelties 
have appeared in passing from equations of finite order to equa­
tions of infinite order. In fact, in the case of homogeneous equa­
tions, the solutions which are set forth by means of the theorem 
are precisely the same as the solutions of certain related equa­
tions of finite order. By allowing the type q of the solution to 
increase one may indeed bring in more and more of these solu­
tions without altering the given equation of infinite order, but 
at each stage he will still have only such functions as arise from 
equations of finite order. By means of the limiting processes 
which are thus suggested, however, one presumably would be 
able to introduce new classes of functions, but such functions 
are not explicit in Theorem 1. This character of the results ob­
tained has persisted throughout a large part (but not all) of 
the development up to the present. Wherever this character of 
result persists, it seems fair to say that the theory so developed 
for differential equations of infinite order has not truly departed 
from the theory of equations of finite order, whence one would 
probably be led to suppose that a penetrating understanding of 
the extended field had not arisen. The pioneer in this more in­
tensive study of differential equations of infinite order is J. F. 
Ritt.* We turn now to an account of the development due to 
Rit t and to those who have pursued similar questions further. 

I t is now convenient to write the equation in the form 

(26) A{y) ^y + aiy' + a2y" + • • • + any^ + • • • = 0, 

* Transactions of this Society, vol. 18 (1917), pp. 27-49. 
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whence the generating function F(z) has the expansion 

(27) F{z) = 1 + <nz + a2z
2 + • • • + anz

n + • • • . 

In the investigations now to be considered, the function F(z) 
is an integral function which is subject to certain additional con­
ditions. I t is clear that if a is a zero of F{z) of order /z, then 
eazQ(z), where Q{z) is a polynomial of degree /x — 1, is a solution 
of (26). I t will be called a fundamental solution. 

In his remarkable memoir, Rit t has given (for the first time) 
general properties of the solution of (26) when the generating 
function is of genus zero. His results have been extended by G. 
Pólya* who has shown that, when F(z) is of minimal type of 
order one, the analytic solutions of (26) are holomorphic functions 
whose domains of existence are convex. On the other hand, on 
making the hypothesis that F(z) has only a finite number of 
multiple zeros and that the moduli of its zeros are sufficiently 
regular,f Ritt has shown that any solution whatever may be 
developed in a series of fundamental solutions valid in the whole 
domain of its existence. 

By means of this result, Rit t gave for the first time the ex­
tension of the Fabry and Hadamard theorem on lacunary 
Taylor series to the case of series of the form 

5 3 cneanZ. 
If the constants e*i, a2, • • • satisfy the stated regularity condition, 
then the frontier of the domain of convergence of this series (a 
domain which is convex) is an essential cut for the function which 
it defines. The demonstration of this theorem given by Ritt does 
not differ in any essential way from that which was independ­
ently given later by Landau and Carlson. 

The later work of G. ValironJ on linear differential equations 
of infinite order with constant coefficients contains what seems 
to be the most important results yet developed along the lines 

* Göttinger Nachrichten, 1927, pp. 187-195. 
t If the zeros of F(z) are denoted by ah a2, «3, • • • , then the regularity con­

dition imposed by Ritt may be stated as follows. There exists an integer r such 
that for n ^r we have | an+i/<xn\ > 1 -\-k/n, where k is a suitable constant greater 
than 2. This condition is used by Ritt for the proof of certain needful properties 
of the generating function F(z). 

t Annales de l'École Normale Supérieure, (3), vol. 46 (1929), pp. 25-53. 
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of Rit t 's path-breaking contribution. The work of Pólya had 
appeared in the meantime. Valiron set himself the problem of 
extending the results of Ritt . He removes the hypothesis that 
the number of multiple zeros of F(z) is limited. Moreover his 
hypotheses on F(z) are in other ways less restrictive than those 
of Ritt . He finds that all the results of Ritt remain valid if one 
supposes only that F(z) is of minimal type of order one (a fact 
which Valiron communicated to Rit t before the appearance of 
Polya's memoir). Some modifications of the results are necessary 
when F(z) is of mean type of order one. The memoir of Valiron 
follows rather closely the methods of Ritt. It is rich in results 
other than those which we have explicitly indicated. 

These investigations by Ritt and by Pólya and by Valiron 
mark the beginning óf an intensive investigation of differential 
equations of infinite order along lines which bring to light 
essential features which are characteristic of the fact that the 
order of the equation is infinite. I t seems clear that results of 
this character should be in the forefront of attention. 

We shall close this section by stating without proof a hitherto 
unpublished general theorem from which a number of previously 
known results are readily obtained, but unfortunately none of 
those deep-lying theorems which Rit t and his followers have ob­
tained. This theorem belongs to a range of ideas which have 
been especially emphasized by Pincherle. 

Consider the equation (15). Let F(z), as in (19), be the corre­
sponding characteristic function. We suppose that F(z) and <j>{x) 
are both integral functions, and we write cj)(v)(0) =sv. The solu­
tion y(x) of (15) is required to be an integral function. Let r be a 
given positive number. Let {\v} and {/*„}, (v = 0, 1, 2, • • • ), be 
two infinite sequences of positive numbers such that T ^ J H ^ X , 

for every v. For each particular value of v let Cv be a closed 
contour of finite length encircling the point 0 and lying in the 
ring /x„ ^ I z\ ^\v, and let Cv pass through no point at which F{z) 
vanishes. Define Tv by the relation 

Then we have the following result. 
A sufficient condition that y(x), defined by the relation 
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JL s, r e**dt 

, t ï 2wi JCV zv+lF(z) 

shall be an integral function satisfying equation (15) is that the 
series 

A i i C \dz I 
„=o Jcv \F(z)\ 

shall be convergent f or every positive number p. 

5. Equations with Polynomial Coefficients. The typical equa­
tion here is of the form 

00 

(28) X (flno + am% + a>n2X2 + • • • + an3,#p))/(n)(x) = 0 0 ) , 
n = 0 « 

where £ is a positive integer and not all the quantities anp are 
zero. This is the special case of equation (1) in which the coeffi­
cients ak(x) are all polynomials of bounded degree. Correspond­
ing systems (2) and (4) and the generalizations of them indi­
cated in §2 also come into play here, the coefficients being re­
stricted in each case to be polynomials of bounded degree. Such 
equations and systems of equations have formed the subjects 
of a considerable number of investigations.* 

So far as I am aware, an intensive investigation of these equa­
tions along the line of what may be called the Ritt tradition 
has never been carried out. In fact I know of no effective pursuit 
of such questions other than those which belong to equations 
with constant coefficients. So far as the subject of the present 
section is concerned, the investigations up to date correspond 

* See among others, the following: S. Pincherle, Memorie Accademia delle 
Scienze, 1st., Bologna, (4), vol. 9 (1888), pp. 181-204; C. Bourlet, Annales de 
l'École Normale Supérieure, (3), vol. 14 (1897), pp. 133-190; T. Lalesco, Journal 
de Mathématiques, (6), vol. 4 (1908), pp. 125-202 ; F . Schürer, Leipziger Berichte, 
vol. 70 (1919), pp. 185-240; E. Hilb, Mathematische Annalen, vol. 82 (1920), 
pp. 1-39; E. Hilb, Mathematische Annalen, vol. 84 (1921), pp. 16-30, 43-52; 
O. Perron, Mathematische Annalen, vol. 84 (1921), pp. 1-15, 31-42; H. von 
Koch, Arkiv för Matematik, Astronomi och Fysik, vol. 16 (1922), No. 6, 21 
pp.; F . Lettenmeyer, Dissertation, München, 1927, pp. 1-52; I. M. Sheffer, 
Annals of Mathematics, vol. 30 (1929), pp. 345-372; I. M. Sheffer, Transac­
tions of this Society, vol. 31 (1929), pp. 261-280; H. T. Davis, Annals of Mathe­
matics, vol. 32 (1931), pp. 686-714. 



I936-] LINEAR DIFFERENTIAL EQUATIONS 209 

in the main to aspects of the problem similar to those treated 
in our §4 exclusive of what has arisen from the use of the meth­
ods of Ritt . Even for these relatively simple questions concern­
ing equation (28) no inconsiderable difficulties have been en­
countered. 

Pincherle's detailed investigation, in the paper cited, was con­
fined to a certain generalized difference equation with rational 
coefficients; but the methods employed by him, extending those 
which he had previously used for the case of constant coeffi­
cients, have played an important role in the subsequent de­
velopment of the theory; and this is the reason for our calling 
attention to his work in the present connection. In several 
papers, not mentioned in our references, some other aspects 
of the theory of difference equations have been considered in 
such a way as to throw light on the theory of differential equa­
tions of infinite order. 

I t seems that the first explicit treatment of equation (28) is 
that contained in Lalesco's memoir of 1908, though results con­
cerning it were implicit in certain earlier papers, particularly 
those of Bourlet and Pincherle both of whom had previously 
published several papers bearing indirectly on the problem. 
Lalesco, incidental to a consideration of the inversion of Vol-
terra integrals, applied to the homogeneous equation the gen­
eral Laplace transformation 

y(x) = I e*'v(t)dt, 
J L 

choosing the path of integration conveniently with reference to 
the coefficients in the equation. In 1920 and 1921 E. Hilb de­
veloped the method in more detail. 

O. Perron (loc. cit., 1921) avoided the use of the Laplace 
transformation and the general theory of infinite matrices and 
gave a quite elementary development by means of the theory of 
systems of equations of the form 

00 

n=0 

He assumed that <j>{x) is of exponential type not exceeding q and 
that the av\ are such that the functions 
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h(z) = X) < W , (X = 0, 1, • • • , p), 

are regular for \z\ Sq (whence the convergence radii of these 
series are greater than q). Then he showed that the homogeneous 
equation, that for which 0(#)=O in (28), has exactly p — p+s 
linearly independent solutions of exponential type not exceed­
ing q, where p is the number of zeros of hp(z) in the circle | z\ Sq 
(multiple zeros counted multiply), and where 5 denotes the num­
ber of linearly independent solutions, regular in the region 
\z\ ^q, of the auxiliary equation 

£ Ax(*)«(X)(*) = 0 
x=o 

of order p. He showed further that the differential equation (28) 
has, for every choice of the function </>(x) of exponential type 
not exceeding q, solutions y of exponential type not exceeding q 
when and only when the corresponding homogeneous equation 
has exactly p — p integrals. 

Lettenmeyer (loc. cit., 1927) extended the methods of Perron 
to systems of equations having polynomial coefficients of 
bounded degree. 

E. Hilb (loc. cit., 1920, 1921) investigated equation (28) by 
aid of the infinite set of equations in an infinite number of un­
knowns obtained through unlimited differentiation of the equa­
tion. He obtained conditions assuring the uniqueness of a solu­
tion. 

While his results were still unpublished Hilb communicated 
some of them to H. von Koch. These turned the latter's atten­
tion again to some ideas with which he had been concerned in 
1912 and it turned out that they were capable of leading to ele­
gant methods for dealing with equations (28) and also with the 
corresponding equations with constant coefficients. Thus, al­
most simultaneously, three different authors, under the influ­
ence of widely diverse guiding ideas, were investigating equa­
tions of the form (28). The work of F. Schürer in 1919 also bears 
on the same problem. 

In 1929 I. M. Sheffer dealt with equations with constant co­
efficients and with linear coefficients. He also investigated ex­
pansions in generalized Appell polynomials and treated certain 
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related linear functional equations. The methods employed are 
similar to those which have been used by Pincherle for many 
years in the investigation of related problems. They arise essen­
tially from the use of the Laplace transformation and the reduc­
tion of the equation to a contour integral equation by means of 
which the investigation may be carried forward. The method is 
extended to partial differential equations and to "Laurent differ­
ential equations," both with constant coefficients. 

H. T. Davis (loc. cit., 1931) treated equation (28) by means 
of the calculus of operators, employing the symbolic methods 
used by Pincherle and especially by Bourlet. The formal solu­
tion of (28) thus obtained is reduced to three useful forms. There 
is a discussion of the validity of the formal solutions and the 
domain of functions to which the operators apply, the domain 
being extended beyond that considered by previous writers. 
"The difficulties admitted by this extension," the author adds, 
"have not been entirely resolved, however, since they have been 
discovered to be inherent in the nature of asymptotic and sum-
mable series, the theory of which is still obscure in many points." 

On this note of inachieved results we take our leave of the 
important subject treated in this section, adding merely the 
statement of our judgment that the results attained up to the 
present have hardly penetrated the surface. The most charac­
teristic elements of this theory, it would seem, still await eluci­
dation in the future. 

6. Equations with Analytic Coefficients. Much of the work of 
Pincherle and Bourlet, referred to in earlier sections, has im­
portant bearings on equations with analytic coefficients; we 
shall, however, omit further analysis of these contributions, con­
fining our attention (in this section) to certain other papers 
which bear more specifically on the analytic function-theoretic 
aspects of the theory of linear differential equations of infinite 
order. 

H. von Koch* considered a system of the form 

dxi JL 
(29) — = 5 > „ * „ ( i = 1,2, • • • ) , 

at „=i 

*öfvers. Kongl. Svenska Vetenskaps-Akademien, Handlingar, (Stockholm), 
vol. 56 (1899), pp. 395-411. 
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where the celv denote power series in / which converge when 
\t\ <R, and where | atv\ <S{AV in the region \t\ Sp<R, Si and 
A v being independent of T and being such that the s e r i e s ^ S ^ k 

converges. Let Xi(0), x2
(0), • • • be a sequence of constants such 

that the series y^Xk(0) A k converges absolutely. Then it is shown 
that there is one and only one integral system of power series 
%i, %2, #3, • • • which for t = 0 take respectively the initial values 
Xi(0), x2

(0), x3
(0), • • • . These series converge when \t\ <R. Em­

phasis is placed on the fact that the notion of fundamental sys­
tems of solutions of (1) may be introduced and that a significant 
part of the Fuchs theory of linear differential equations may be 
carried over to these systems. Extensions of the theory are also 
presented. 

Lalesco's paper of 1908, cited in §4, contains results relevant 
to the present section. 

M. Gramegna* employed the matrix notation and certain 
symbolic processes in treating (29) and the corresponding non-
homogeneous system. 

F. R. Moulton f treated the infinite system of differential equa­
tions 

dx ' 
(30) —- = ƒ<(*; xh * , , • • • ) = «<+ fiw + fim + • • • , 

at 
(*"= 1 , 2 , . - . ) , 

where at is a constant and fl
u) is the totality of terms in 

the power series expansion of ƒ* which are homogeneous in 
ty Xi, x2, • • • and of degree j . The functions fi are said to be of 
analytic type. It is assumed that the following hypotheses are 
satisfied : 

(Hi) Xi: = 0 at / = 0 for each i of the set 1 , 2 , 3 , - . ; 
(H2) Finite real positive constants c0, CI, c2, • • • , fo, fi, r2, • • • . 

A, a exist such that 

(31) s = c0t -\- ciXi + C2X2 + • • • 

converges if 

* Atti Reale Accademia delle Scienze, Torino, vol. 45 (1910), pp. 469-491. 
f Proceedings National Academy of Sciences, vol. 1 (1915), pp. 350-354. 

The substance of this investigation, together with some applications, is con­
tained in the final chapter of Moulton's book on Differential Equations, 1930. 
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(32) | / | ^ r0, \xt\Su, (i= 1, 2, • • • ) , 

and such that Arts' dominates fia) and ai^Ar^a. 
If an analytic solution of (30) exists, satisfying the initial con­

ditions (Hi), it will necessarily have the form 

Xi = APH + A^H* + APH* + • • • , (i = 1, 2, • • • ) . 

It is readily shown that just one formal solution of this form 
exists. In order to prove the suitable convergence of the series 
in this formal solution, and hence to establish the existence of 
an actual solution, the author employed the method of dominant 
functions in much the same way as that which is usual in the 
corresponding case of finite systems. The result obtained is a 
natural generalization of the classic theory of finite systems. 

The limitations placed on / in carrying out the convergence 
proof are so restrictive that the corresponding Xi are not shown 
to attain the boundary of the region for which the right mem­
bers of (30) converge. A question thus arises whether the solu­
tion can be continued beyond the domain indicated by the first 
argument. That the answer is affirmative is shown by the pres­
entation of an effective method for obtaining the desired con­
tinuation. 

W. G. Simon* proved general existence theorems for equa­
tions of the form (29) and in particular treated certain types of 
solutions of particular kinds of systems with periodic coeffi­
cients. He found that many of the phenomena of the finite sys­
tems are carried over into the infinite systems of differential 
equations. 

W. Sternbergf treated the system 

dy- °° 
(33) —^ = aiQ(x) + X) <**/(*) y n (i = 1, 2, • • • ) , 

ax j = i 

where the aik(x) are analytic functions of x which are regular 
in the region S defined by the relation \x — a\ g r , where a is a 
given point and r is a given positive constant. I t is assumed that 
the series in the relations 

gi(oc) = | ai0(x) | + | an(x) | + | ai2(x) \ + • • • , (i = 1, 2, • • • ), 

* American Journal of Mathematics, vol. 42 (1920), pp. 27-46. 
f Heidelberg Akademie Sitzungsberichte, 1920, No. 10, pp. 1-21. 

file:///xt/Su
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all converge uniformly in S. Then constants Ni exist such that 
we have 0^gi(x)^Nif (i = l, 2, • • • ), throughout S. It is as­
sumed that N exists such that N{^N, (i = l, 2, • • • )• Let 
&i, h, - - - be any set whatever of constants such that | ft*| < C, 
(i = l, 2, • • • ), for some appropriate constant C. Then it is 
shown that there is one and only one system of integrals 
3̂ 1,3̂ 2, • • • of (33) which satisfy the initial conditions ji\ x==a = bi 
and are regular throughout S. These integrals are bounded func­
tions of x and throughout S satisfy for each i the inequality 
|:y»(#)| <CeNr. The proof is made by the method of successive 
approximations. 

The corresponding homogeneous system (namely, that for 
which dio(x) =0) is treated under the additional hypothesis that 
constantsK and n,n>l, exist such that | a ^ ( x ) | <K(ik)~n in S, 
and it is shown that systems of solutions exist having the char­
acteristic properties of fundamental systems. It is finally indi­
cated that the essential results hold under somewhat less re­
strictive hypotheses. 

It is clear that we have here (as in previous cases) a choice 
of hypotheses which lead to conclusions as nearly similar as pos­
sible to those subsisting in the finite case. What one would prefer 
to see are results which are characteristic of the infinite case. 
But these, in the main, await discovery in the future. 

Infinite systems of differential equations have also been 
treated by A. Wintner,* D. C. Lewis,f and others. (See also 
the next section.) 

Let us consider the (finite or infinite) differential operator 
P(D) defined by the relation 

(34) P(D) = aoDQ + aj) + a2D
2 + a3D* + • • • , 

where ao, ai, a2, • • • are all given functions of x and where D 
is the symbol for differentiation with respect to x. The theory 
of linear differential equations of infinite order has brought to 
notice those operators P(D) which have the following general 
property in common with the operation of differentiation, 
namely, that for any given finite point whatever #o and any 

* Mathematische Annalen, vol. 95 (1926), pp. 544-556; vol. 98 (1928), pp. 
273-280; American Journal of Mathematics, vol. 53 (1931), pp. 241-257. 

t Transactions of this Society, vol. 35 (1933), pp. 792-823. 
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given function u{x) whatever, analytic at Xo, the operator P(D) 
shall be applicable to u{x) and shall yield a resulting function 

P(D)u = a0u + diu' + ÛW" + • • • 

which is itself analytic at Xo. By considering the functions 
u(x) = (x — x0)

k, for varying points x0 and varying non-nega­
tive integers k, it is easy to show that each of the functions 
#0, du #2, * • • is an integral function. 

In fact it is not difficult to show that for the required condi­
tions on P(D) it is necessary that the functions ao, aiy a2f - • -
shall be integral functions which for every x0 verify the relation 

l im I aP(x0)v\\llv = 0 . 
j / = 00 

On the other hand, it may be shown to be sufficient that the 
functions ao, aly a2, • • • shall be integral functions which for 
every non-negative number a verify the relation 

lim (M^viyi" = 0, 
p= 00 

where Mva is the maximum value of | av{x) | for \x\ =cr. 
Whether the necessary condition and the sufficient condition 

here given can be brought closer together by simple means I 
have not determined, even though the results as they stand are 
not altogether satisfactory. The reader will not find it difficult 
to supply the proof for at least as much as is stated here. 

7. Some Further Problems and Connections. The problem of 
an infinite system of differential equations was treated by E. H. 
Moore* at the fourth international congress of mathematicians 
at Rome in 1908, from the point of view of general analysis, the 
functions not being restricted to those of analytic type. In a 
series of papers W. L. Hart f developed theorems concerning a 
type of real-valued functions of infinitely many real variables 
and employs these results in treating infinite systems of ordi­
nary differential equations both non-linear and linear; the linear 

* Atti del IV Congresso Internazionale Matematica, vol. II (1909), pp. 9 8 -
114. 

f Proceedings National Academy of Sciences, vol. 2 (1916), pp. 309-313; 
Transactions of this Society, vol. 18 (1917), pp. 125-160; American Journal of 
Mathematics, vol. 39 (1917), pp. 407-424. 
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system is associated with its adjoint, and the notion of funda­
mental systems of solutions is employed. T. H. Hildebrandt* 
developed a theory of linear differential equations in general 
analysis, utilizing both the concepts of general analysis and the 
general theory of integral equations. P. Flamantf has applied 
the method of successive approximations to equations of the 
form (33), pointing out that the results are valid both for the 
case of analytic functions and for that of continuous functions 
of a real variable. 

W. L. Har t} developed the Cauchy-Lipschitz method for infi­
nite systems of differential equations. I. A. Barnett§ treated 
both ordinary and partial differential equations with a con­
tinuous infinitude of variables. H. T. Davis|| has associated 
fractional operations with problems of the type here treated. 
L. Pomey 1f has published a series of relevant papers. N. Wiener** 
has treated the operational calculus. W. T. Reidft n a s developed 
a theory of infinite systems with auxiliary boundary conditions; 
he has also treated infinite systems in the domain of Lebesgue 
summable functions. Finally, there are many other papers deal­
ing with our subject; they are written both by the authors here 
quoted and by others; considerations of space prevent our treat­
ing them; for the most part they will come to the reader's at­
tention through references given in the papers referred to in 
this address. 

There are several aspects of the theory of difference equations 
of finite order which illuminate and are illuminated by the 
theory of differential equations of infinite order, as will be seen 
from the relevant papers of Pincherle, Hilb, Perron, Carmichael, 

* Transactions of this Society, vol. 18 (1917), pp. 73-96, and vol. 19 (1918), 
pp. 97-108. 

t Bulletin des Sciences Mathématiques, (2), vol. 45 (1921), pp. 81-87. 
t American Journal of Mathematics, vol. 43 (1921), pp. 226-231. 
§ American Journal of Mathematics, vol. 44 (1922), pp. 172-190, and vol. 

45 (1923), pp. 42-53. 
|| American Journal of Mathematics, vol. 46 (1924), pp. 95-109,and vol.49 

(1927), pp. 123-142. 
H Paris Comptes Rendus 1926, 1927, 1928, and elsewhere. 
** Mathematische Annalen, vol. 95 (1926), pp. 557-584. 
ft Transactions of this Society, vol. 32 (1930), pp. 284-318; Annals of 

Mathematics, vol. 32 (1931), pp. 37-46, 
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Bochner, Ghermanesco, and others; but we cannot here treat 
them further than the bare indication given in §3. It may be 
mentioned, however, that some of the theorems about differ­
ential equations of infinite order imply corresponding results 
about difference equations of infinite order, but ordinarily they 
do not yield the latter results under the most natural hy­
potheses. The suggestion is inevitable that we are in need of 
a more direct theory of difference equations of infinite order. 
A few results looking in this direction appear in the disserta­
tion of G. B. Lang (already mentioned). Integral equations and 
integro-differential equations have been associated with differ­
ential equations of infinite order. In this connection one may 
mention an important paper by F. Schürer* on a common method 
of treating certain problems involving functional equations. 

Problems relating to expansions in Appell polynomials are in­
timately connected with the theory of linear differential equa­
tions of infinite order with constant coefficients, a fact which 
was clearly recognized by Pincherle about fifty years ago. Re­
cently, I. M. Shefferf has developed a theory of expansions in 
generalized Appell polynomials { and has applied the results to 
a class of related linear functional equations. He was primarily 
concerned with linear differential equations of infinite order 
with polynomial coefficients of bounded degree and their rela­
tion to expansions in generalized Appell polynomials. Let 

00 

Aiit) ~ Ys aintn, (i = 0, 1, 2, • • • , k), 

be k + 1 formal power series, with Ak(t)^0. Then the general­
ized Appell polynomials {Gn(x)}, of order k, are defined by the 
(formal) expansion 

00 

e"{A0(t) + xAi(t) + • • • + x"Ak(t)} ~ £(?»(*)<". 
n=0 

A general theory is given for the expansion of functions f(x) of 
exponential type in terms of the polynomials Gn(x), this theory 
being developed in intimate connection with differential equa-

* Leipziger Berichte, vol. 70 (1919), pp. 185-240. 
t Transactions of this Society, vol. 31 (1929), pp. 261-280. 
J Pincherle also considered certain generalized Appell polynomials. 
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tions of the type mentioned earlier in this paragraph. By playing 
the two theories one against the other the author makes useful 
extensions of both of them. Related expansion problems are 
likely to undergo a considerable development in the near future. 

We may fittingly bring these remarks to a close by emphasiz­
ing one aspect of the existing theory of differential equations of 
infinite order to which we have already directed attention. In 
the main it has been true that the results mentioned are closely 
analogous to corresponding ones for differential equations of 
finite order. The theorems for the most part take the form which 
is suggested by corresponding theorems for the simpler case. In 
fact, there often seems to be a conscious purpose to formulate 
the hypotheses in such a way as to preserve the analogies in the 
most intimate form possible. This is perhaps to be expected in 
a first approach to the more general subject; it is natural to in­
quire to what extent analogies subsist. Again, in so far as ex­
plicit information about the functions in a solution is concerned, 
we usually have only that which arises in close analogy with the 
finite case. In fact, in all our remarks (except for differences 
shown by examples) it has been true, with one single exception, 
that the results presented indicate no marked departure from 
the finite case. So far as I am aware, there is no other general 
exception to this statement to be found in the literature. The 
exception to which we refer is in the results initiated and in­
spired by J. F. Ritt, as already indicated in our §4. In these 
results of Ritt and Pólya and Valiron we have properties of the 
solutions of linear differential equations of infinite order which 
are different from anything that arises in the finite case. They 
are characteristic of the equation with respect to its being of 
infinite order. I t would seem to be beyond dispute that such 
characteristic properties are the ones most eagerly to be sought. 
And yet a single small group of them stands out as apparently 
unique in the whole literature. This fact presents a challenge to 
analysts interested in functional equations. We have hardly 
penetrated the surface of the important theory of differential 
equations of infinite order. We need a further development of 
those elements of the theory of these equations which are char­
acteristic of them as being of infinite order. 
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