$\Sigma_{n,r}(1/X) + \lambda_{r+1}\Sigma_{p,r+1}(1/X) \leq \Sigma_{p,r}(1/w) + \lambda_{r+1}\Sigma_{p,r+1}(1/w)$

hoids.

In such a set w, w_n is the largest number that exists in any E-solution of the equation in (1°) and w_n appears in no E-solution of this equation except w. Furthermore a similar statement holds when the left member of the equation in (1°) is replaced by

 $\Sigma_{n,r}(1/x) + \Sigma_{n,r+1}(1/x) + \cdots + \Sigma_{n,s}(1/x),$

where, as heretofore, s is a positive integer and $r < s \leq n$.

THEOREM 5a. In each of the two cases of Theorem 4a, if X is an E-solution of the given equation and $\neq w$, the Kellogg solution of that equation, then P(X) < P(w).

The following corollaries show that the theorems of this section have content in cases where $\mu = 2$ when r = 1.

COROLLARY 5. For the equation $\sum_{n,1}(1/x) + 3\sum_{n,2}(1/x) = 5/17$, with n > 2, the set w of Theorem 4a is given by $w_1 = 4$, $w_2 = 40$, $w_{i+1} = 17 [\sum_{i,i}(w) + 3\sum_{i,i-1}(w)] + 1$, $(i = 2, \dots, n-2)$, and $w_n = 17 [\sum_{n-1,n-1}(w) + 3\sum_{n-1,n-2}(w)]$.

COROLLARY 6. For the equation $\sum_{n,1}(1/x) + \sum_{n,2}(1/x) = 4/13$, with n > 2, the w of Theorem 4a (see last sentence of that theorem) is given by $w_1 = 4$, $w_2 = 22$, $w_{i+1} = 13 [\sum_{i,i}(w) + \sum_{i,i-1}(w)] + 1$, $(i = 2, \dots, n-2)$, and $w_n = 13 [\sum_{n-1,n-1}(w) + \sum_{n-1,n-2}(w)]$.

Northwestern University

ERRATA

The following changes should be made in the present volume (Vol. 40) of this Bulletin:

Page 93, last line of Theorem 2, insert before the words "is that" the words "and that $f_m(x)$ be continuous."

Pages 413–416, change f to f_0 in the following places: in the statement of Theorem 2 on p. 413; in the statement of Theorem 6 on p. 415; and in five places occurring in the first six lines of p. 416.

894