$$
\Sigma_{n, r}(1 / X)+\lambda_{r+1} \Sigma_{p, r+1}(1 / X) \leqq \Sigma_{p, r}(1 / w)+\lambda_{r+1} \Sigma_{p, r+1}(1 / w)
$$

hoids.
In such a set $w, w_{n}$ is the largest number that exists in any E-solution of the equation in $\left(1^{\circ}\right)$ and $w_{n}$ appears in no $E$-solution of this equation except w. Furthermore a similar statement holds when the left member of the equation in $\left(1^{\circ}\right)$ is replaced by

$$
\Sigma_{n, r}(1 / x)+\Sigma_{n, r+1}(1 / x)+\cdots+\Sigma_{n, s}(1 / x)
$$

where, as heretofore, $s$ is a positive integer and $r<s \leqq n$.
Theorem 5a. In each of the two cases of Theorem 4a, if $X$ is an E-solution of the given equation and $\neq w$, the Kellogg solution of that equation, then $P(X)<P(w)$.

The following corollaries show that the theorems of this section have content in cases where $\mu=2$ when $r=1$.

Corollary 5. For the equation $\Sigma_{n, 1}(1 / x)+3 \Sigma_{n, 2}(1 / x)=5 / 17$, wiih $n>2$, the set $w$ of Theorem 4 a is given by $w_{1}=4, w_{2}=40$, $w_{i+1}=17\left[\Sigma_{i, i}(w)+3 \Sigma_{i, i-1}(w)\right]+1, \quad(i=2, \cdots, \quad n-2), \quad$ and $w_{n}=17\left[\Sigma_{n-1, n-1}(w)+3 \Sigma_{n-1, n-2}(w)\right]$.

Corollary 6. For the equation $\Sigma_{n, 1}(1 / x)+\Sigma_{n, 2}(1 / x)=4 / 13$, with $n>2$, the $w$ of Theorem 4 a (see last sentence of that theorem) is given by $w_{1}=4, w_{2}=22, w_{i+1}=13\left[\Sigma_{i, i}(w)+\Sigma_{i, i-1}(w)\right]+1$, ( $i=2, \cdots, n-2$ ), and $w_{n}=13\left[\Sigma_{n-1, n-1}(w)+\Sigma_{n-1, n-2}(w)\right]$.

Northwestern University

## ERRATA

The following changes should be made in the present volume (Vol. 40) of this Bulletin:

Page 93, last line of Theorem 2, insert before the words "is that" the words "and that $f_{m}(x)$ be continuous."

Pages 413-416, change $f$ to $f_{0}$ in the following places: in the statement of Theorem 2 on p. 413; in the statement of Theorem 6 on p. 415 ; and in five places occurring in the first six lines of p. 416.

