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27 14 1 10 9 23 5 19 18 
(2) 13 3 26 8 22 12 21 17 4 

2 25 IS 24 11 7 16 6 20 

27 14 1 10 9 23 S 19 18 
(3) 11 7 24 6 20 16 25 15 2 

4 21 17 26 13 3 12 8 22 

27 13 2 10 8 24 5 21 16 
(4) 11 9 22 6 19 17 25 14 3 

4 20 18 26 15 1 12 7 23 

Each of these normalized cubes represents a group of 1296, 
so that there are altogether 5,184 magic cubes of order 3. 
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A well known and important theorem of analysis states that 
a function f(x) which is continuous on a bounded closed set E 
can be extended to the entire space, preserving its continuity. 
Let us consider a metric space S and a function f(x) defined and 
possessing a property P on a subset E of S. We shall for the 
sake of brevity say that ƒ (x) can be extended to S preserving prop­
erty P , if there exists a function 4>(x), defined and possessing 
property P on all of S, which is equal to f(x) for all x on E. Our 
present object is to establish an easily proved theorem which 
both includes the classical theorem stated above, and also 
shows that functions satisfying a Lipschitz or Holder condition 
on an arbitrary set E can be extended to 5 preserving the 
Lipschitz or Holder condition. An advantage of the present 
procedure is that it yields an explicit formula for the extension, f 

* Presented to the Society, June 20, 1934. 
f After this paper was submitted for publication, the author found that 

Hassler Whitney had already indicated a simple proof that a function continu­
ous on a bounded closed set can be extended to be continuous on all space, the 
method of extension being almost identical with the present one. (H. Whitney, 
Transactions of this Society, vol. 36 (1934), footnote on p. 63). 
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In order to exhibit the simplicity of the method we first con­
sider the special case of Lipschitzian functions. In our metric 
space 5 we denote the distance of points Xi, x2 by \\Xi, X2\\. 

THEOREM 1. Let the real-valued function f {x) be defined on a 
subset E of the metric space S and satisfy the Lipschitz condition 

(1) | / (*i) -ƒ (**) | ^M\\xux,\\ 

on E. Then f(x) can be extended to S preserving the same Lip­
schitz condition. 

For every x of S we define (f>(x) to be the least upper bound 
oîf{x)-M\\x, x\\ for all x of E: <j>(x) = B{f(x) -M\\ X, X\\). If x 
is in E, we have <j>{x) =f(x) ; for by (1), f{x) — ikf|| x, x\\ Sf(x), 
and this upper bound ƒ(x) is attained for x = x. Also, <fi(x) satis­
fies the Lipschitz condition. For let x, x' be any two points of 
5, and suppose to be specific that cj>(x') ^cj>(x). Then, unless 
4>(x) =<£(#') = °° , 

0 rg *(*') ~ *(*) = B(f(x) - M\\x, X'\\) - B(f(x) - M\\x, X\\) 

S B[(m ~ M\\*, x'\\) - (f(x) - M\\x, xj)] 

= BM(\\&, x\\ - | |x, x'\\) g M||*, X ' \ \ . 

Therefore, unless <fi(x) = <j>(x') = °o, we have 

(2) |</>0) ~ <K*')| â M\\x, X ' \ \ . 

In particular, if x is arbitrary and x' is in E, <fr (#') is finite ; then (2) 
holds. Hence, by (2), </>(x) is always finite and (2) always holds. 

Before proceeding to the general case we prove a lemma con­
cerning moduli of continuity. If f(x) be defined on E, we define 
its least modulus of continuity œ0(t) by the relation 

co0(0 = "B\f(x) — f(x) | f or all x, x of E such that \\x, x\\ St. 

We say thatco(^) is a modulus of continuity of the f unction f(x), 
if co(J)èco0(/); that is, if the inequality \f(x)—f(x)\ ^œ(t) holds 
for all points x, x of E such that \\x, x\\ St. Clearly co0(/) is non-
negative and monotonie increasing; and by definition, f(x) is 
uniformly continuous on E if œ0(t) tends to zero with /. 

LEMMA. If o?o(/) is defined and non-negative for / ^ 0 , and there 
exist constants h, k such that ooo(t) Sht-\-k1 then there exists a fune-
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tion o)(t)^:0)o(t) which is continuous and concave* for all t>0. 
Moreover, ifcoo tends to 0 with t, we may require <a(t) to do the same. 

In the (t, u) plane we consider the totality of all lines u = at+b 
for which the inequality coo(t) ^at-\-b holds for all t. For each 
such line the region t^O, u^at+b is a convex region; hence the 
common part II of all these regions is convex. Its upper bound­
ary is a concave curve u = œ(t); and since the curve u = o)o(t) 
lies in II, we have co(/)^co0(0- On any interval O^tSto, the 
function œ(t) is bounded; being concave, it is therefore continu­
ous. Suppose further that o)o(t)—>0; then to every €>0 there 
corresponds a ô such that 0 ^ ooo(t) â e for t^8. We can easily find 
a linear function u = at+e, a>0, such that at -\-e>ht+k^:0)o(t) 
for / > ô . Then o)(t) <at+e, so that 0^1im*_0co(/) ^ e. This being 
true for every e>0 , the limit of co(t) must be zero. 

As examples of f unctions ƒ (x) for which co0(£) satisfies the hy­
potheses of the lemma, we have the following. 

(a) All bounded uniformly continuous functions. For if 
| / | ^ 1 , then w 0 ( ^ 2 J l f . 

(b) All functions satisfying a Holder condition 

I/(*i) - ƒ(**) | ^ M\\xh *,||«, (0 < a S 1). 

For then œ0(t) ûMt°£M(l+t). 

THEOREM 2. Iff(x) is a real function defined on a subset E of a 
metric space 5, and f(x) has a modulus of continuity co(f) which 
is concave for t^O and which approaches zero with t, then f (x) can 
be extended to S preserving the modulus of continuity co(/). 

As a first remark, we observe that œ(t) is monotonie increas­
ing; otherwise it would be negative for sufficiently large t, which 
is absurd. We now define 

<J>(X) E Ï ( f ( « ) - « ( | | « , * | | ) ) , 

where x ranges over E. For all x of E we have <j>(x) —fix), be­
cause by hypothesis ƒ (#) — <a(\\xt x\\) ëÉ/(V), and this upper bound 
fix) is attained for x = x. 

Let now x and x' be any two points of S for which <f>(x) and 
(j>(xf) are not both infinite, and suppose to be specific that 

* Concave downwards. 
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<f>(x) ^(/>(x'). Then, remembering the monotoneity and concav­
ity of œ(t), we see that 

0 ^ *(*) - 4>(x') = !(ƒ(*) - «((I*, *||)) - B(f(x) - w(||*, *'||)) 

£ £[(ƒ(*) - W(||*, *||)) - (ƒ(*) - «(II*, *'||))] 

^ J3[w(||*, #|| + II», ff'||) — «(II*, ff||)] 

^ « d l * , «'ID. 
Hence, unless <j>{x) = 4>(x') — oo, the inequality 

(3) | 0(o?) - * ( * ' ) | £ « ( | | * , x'\\) 

holds. If we choose xf in E, <f>(x') is finite, so that (3) holds for 
all x. This implies that 0(x) is always finite, so that (3) holds for 
all x and x' of 5 without exception. 

COROLLARY 1. If f{x) satisfies on E a Lipschitz or Holder con­
dition 

I f(*i) - ƒ(**) | S M\\xh *,||«, (0 < a ^ 1), 

then f{x) can be extended to S preserving the Lipschitz or Holder 
condition. 

For in Theorem 2 we can take œ(t) = Mta. 

COROLLARY 2. Iff{x) is bounded and uniformly continuous on 
E, it can be extended to S preserving the uniform continuity and 
the bounds. 

For by the lemma, ƒ(x) has a modulus of continuity œ(t) satis­
fying the hypotheses of Theorem 2. We can therefore find a 
function <t>(x), defined and with modulus of continuity œ(t) on *S 
and coinciding with f(x) on E. If m, ikf are, respectively, the 
lower and upper bounds of ƒ(#) on E, we define 4>(x)~4>(x) 
where m^<t>(x) ̂ -M, <j>(x)=M where <f>(x) >M, <j>(x)=m where 
<t>(x) <m. Then <ƒ>(#) has bounds m and M, and œ(t) serves as a 
modulus of continuity for <j>(x) ; and on E we have 4> = 0 =ƒ. 

As a special case of Corollary 2, a function f(x) defined and 
continuous on a bounded closed subset E of ^-dimensional eu-
clidean space Sn can be extended to Sn, preserving continuity 
and the bounds. For fix) is necessarily bounded and uniformly 
continuous on E. 
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COROLLARY 3. If f(x) is uniformly continuous on E, it can be 
extended to be continuous on S. 

If x' is a limit point of E, f(x) has a unique limit as x ap­
proaches x'', because of the uniform continuity of/. Hence we 
can extend ƒ at once to the closure E of the set E, preserving 
uniform continuity. If we define p{x) to be the distance of x 
from the set Ey then p(x) = 0 for x in E and p(x) > 0 for all other 
x. Let us now define f\(x) = (2/T) arc tan ƒ(#); then | / i | < 1 for 
all x in £ . Since | fi(x) — fi(x') | < | f(x) —f(x') I » ft '1S d e a r t n a t 

/ i is uniformly continuous on E. By Corollary 2 there exists a 
function <£(x), continuous on 5, coinciding with/ i on E, and such 
t h a t j ^ l g l . If we define <f>(x) = 0(*)(l+/>(*))'"1, then for all 
x in £ we have | </>(x) | = 10(x) | < 1, while for all other x we have 
100*01 < 100*01 = 1 - Hence the inequality |0(#) | < 1 holds for 
all x. The function \f/(x) = t a n (j<j>{x)/2) is then the desired ex­
tension of/. For on E we have <j>(x) =<f>(x) =fi(x), so tha,t\f/(x) 
=ƒ(#) ; and since <j> is continuous and less than 1 in absolute 
value, \f/(x) is continuous for every x. 

If we compare Corollary 3 with Theorem 2 (and the lemma), 
we see that it has weaker hypotheses, since we do not assume 
thatco0(0 is less than a linear function ht+k, and it also has a 
weaker conclusion, since the extension of f(x) is not necessarily 
uniformly continuous. As a matter of fact, if 5 is a linear space 
it can be shown with little difficulty that in order for f(x) to 
be extensible to a uniformly continuous function 5 it is neces­
sary that coo(£) be less than some linear function. 

Before proceeding to Corollary 4 we introduce some new 
notation. We denote by K(x, r) the sphere with center x and 
radius r; that is, the set of all x' such that ||x', x\\ <r. The sur­
face of the sphere we denote by K*(x, r) ; this is the set of all 
x for which ||x', #|| =r. The sum of K(x, r) and i£*(x, r) is 
K(x, r). These are all metric spaces, if not vacuous. 

COROLLARY 4. If f(x) is bounded and uniformly continuous on 
every sphere K(x, r) of S, it can be extended to be continuous on 5, 
the extension being bounded and uniformly continuous on every 
sphere K(xt r). 

As in Corollary 3, we may assume that the range of definition 
E is closed. We choose a point #o of S1 and denote by Kn the 
sphere K(XQ, n). For each n we can extend f{x) (considered as 
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a function on E • Kn+1 alone) to be bounded and uniformly con­
tinuous on E'Kn+i+Kn*, by Corollary 2. For each n, this 
extended ƒ is bounded and uniformly continuous on the set 
E- (Kn — Kn-^+K^-i+K^, and hence can be extended to be 
bounded and uniformly continuous on Kn — Kn-i- The exten­
sions of ƒ thus obtained piece together to form a function <£(x) 
which is bounded and uniformly continuous on each Kn and 
continuous on all of S. Every sphere K(x, r) lies in some Kn, 
hence </>(x) is bounded and uniformly continuous on K(x, r). 

As a consequence of Corollary 4, every function defined and 
continuous on a closed set E of euclidean n-space Sn can be ex­
tended to be continuous on Sn. 

Corollary 4 does not include Corollary 3. Suppose for example 
that S is a Hubert space and Xi, X2, • • • is a normed orthogonal 
set. If we assign f(x) any values on the x*, it can be extended 
(by Corollary 3) to be continuous on S, because wo(0 = 0 for 
0 ^ / < 2 1 / 2 . But the hypotheses of Corollary 4 are not satis­
fied unless the values ƒ(#»•) are bounded. 

A function ƒ(x, y), defined on a set E in the (x, y) plane and 
absolutely continuous in the sense of Tonelli, can not always be 
extended even to be of limited total variation, not even if E be 
an open set plus its boundary. For let In denote the interval 
2~2n-lSxS2-2n, {n = 0, 1, • • • ), and let E be the set (x in 
^L,In, 0^3>^1) plus the intervals x = 0, 0 ^ ^ ^ 1. If x is in In, we 
define/(x, y) = ( —l)w(^ + l)~1 ; for x = 0, we set / (x, y) =0 . This 
function is continuous on E and absolutely continuous in the 
sense of Tonelli in the interior of E. But any function <£(#, y) de­
fined on the unit square Q: O ^ x ^ l , O^y^l, and coinciding 
with ƒ on E would fail to have limited total variation, for on any 
abscissa through Q the function would pass through the values 
1, —1/2, + 1 / 3 , —-1/4, • • • . I t does not help to require E to 
be simply connected. For to the set E above let us add the part 
of Q below the line y=x, and in each of the trapezoids thus 
added let us define/(x, y) to be linear in x and joining continu­
ously to the values already assigned on E. The new set E\ con­
sists of a simply connected open set plus its boundary ; ƒ (x, y) is 
absolutely continuous, and still any extension to Q must fail 
to have limited total variation. 
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