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Hence by 9, (pq')*-* [(PQ')*Z*] in T. 
Hence by 20 and 19, (pq')*-3 { [p{pq)']*[(Pq)P']*) in T. 

Hence by 9, (p-3q)-3[(p-3pq)(pq-3p)] in T. 

23.2. [(p -3 pq)(pq -3 p)] -3 (p-3 q) in T. 

Proof. By 9 and 6, (ppf)* in T, whence by 16, Z* in T. 

Hence by 19, when we replace p by {pq')* and q by Z*, 

{[(te')*z*](te')*'}*™T-
Hence by 9, [ (£g ' )*£*H(£g ' )* in T. 
Hence by 20 and 19, { [p(pq)']*[(pq)P']*} ~3(pq')* i n T. 
Hence by 9, [(/>^£g)(£g-3£)]-3(£-3g) in T. 

It will be noted that these proofs could be written out without 
the use of the "star" notation, since p* serves merely as an ab­
breviation for p-ip', and {pq9)* as an abbreviation for p-3q. 
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1. Introduction. It is well known that there are certain in­
tegral invariants associated with holonomic dynamical sys­
tems. Cartanf demonstrated that it is possible to characterize 
a Hamiltonian system by means of the relative integral in­
variant 

I YJ Pidqt - Bdt. 
J c i 

The purpose of this paper is to extend the theory to the case 
of non-holonomic systems. 

We shall adopt the following conventions in notation. There 
are three ranges of indices, which we shall usually represent by 

f Presented to the Society, June, 20, 1934. I wish to acknowledge my in­
debtedness to A. D. Michal for criticism and suggestions during the writing 
of this paper. 

t E . Cartan, Leçons sur les Invariants Intégraux, 1922, p . 13. Also W. F . 
Osgood, this Bulletin, vol. 39 (1933), p . 882, Abstract No. 343. 
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s, i,p, (5 = 1, 2, • • • , n + k; i = l , 2, • • • , n\ v = l> 2, • • • , k). 
Hereafter we shall not state explicitly these ranges for the in­
dices. 

2. The Equations of Motion. Consider a non-holonomic dy­
namical system with n degrees of freedom and n+k natural co­
ordinates #i, • • • , qn+k, subject to the non-integrable relations 

n 

(1) jn+v = J2 av4i + a», 
»=*1 

where the a's are continuous functions of gi, • • • , qn+k, t} pos­
sessing continuous first partial derivatives. For such a system, 
assumed conservative, the equations of motion are* 

d dL dL * 
__ = _ 2^ avi\Vl (i = 1, • • • , n) y 

, v dt dqi dqi „=1 
(2) 

d dL dL 
T* 7^~~ = 2— + x*> (* = 1, • • • , A), 
dt dqn+v oqn+v 

where the X's are Lagrangian multipliers, functions of the time. 
It is to be observed that in case the system is holonomic all the 
X's are zero, and Lagrange's equations hold in the usual form. 

If we introduce new coordinates (q8j p8, /), where pB = dL/dq9j 

and set 
n-\-k 

(3) H = J^psqs -L, 
s = l 

then equations (2) become f 

dqs dH 

dt dps ' 

dpi dH * 

(4) dt dq{ „=1 

dpn+v dH 

__ = _ 1_ x„, 
at oqn+v 

* P. Woronetz, Über die Bewegung eines starren K or per s, Mathematische 
Annalen, (1911), p. 421; also Whittaker, Analytical Dynamics, 1927, p. 214. 

f For the transformation process, see Appell, Traité de Mécanique Ra­
tionnelle, vol 2, 1911, p.403. 
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and we find, in addition, that 

dll * dL dH dL 
(5) = 2 ^ ö„Xr y = 

dt v=i dt dt dt 

3. Integral Invariants.* Consider a system of differential equa­
tions 

dxi 
(6) — = Xi(xh • • - , * » , / ) , 

at 

where the X's are continuous, together with all of their partial 
derivatives of the first order, in the neighborhood of the point 
(xi°, • • • , xn°, 0), and where not all the X's vanish at this point. 
Then we can write the solution in the form 

\ ' / X{ = J i\t ) % y ' ' ' ) %n ) • 

Let the initial values be made to depend upon a parameter: 

Xi° = Xi°(a), (aQ ^ a S « 1 ) , 

these functions being continuous, with continuous first deriva­
tives, such that 

Putting these values in (7), we get equations of the form 

Xi = Fi(t, a) = fi[t\ Xi°(a), • • • , xn°(a)], 

and these equations represent a tube of trajectories of the given 
system (6). If we envisage a regular curve C encircling this tube, 
in such manner that each trajectory cuts C once and only once, 
in a point for which / > 0 , then we may speak of C as a simple, 
closed circuit of the tube of trajectories. 

Now let functions Ai(xi, • • • , # » , / ) and A(xi, • • • , xn, t) be 
given, and consider 

J2AidXi + Adt= J^Ai + A — \da. 
c w J«o L *-i da da J 

If this integral has the same value for all such simple closed 

* For other forms of definition, see Appell, loc. cit., vol. 2, p. 464. 



738 A. E. TAYLOR [October, 

circuits C encircling an arbitrarily chosen tube of trajectories of 
(6), it is called a relative integral invariant of the system (6). 
If, in particular, the circuit corresponds to a fixed instant /, then 
the integral has the form 

I 2-iAidXi^ I 2-aAi da. 
J c t«=i ^ « 0 t = i da 

This we shall call a Poincaré* integral invariant, while (8) will 
be referred to as a Cartan invariant. 

4. The Integral Invariant. Let there be given a non-holonomic 
system, subject to the kinematical conditions (1), and having 
the equations of motion (2). These two sets of equations define 
the q's and À's as functions of the time. There is a 2(n+k)~ 
parameter family of path curves of the system, represented by 
the functions 

(9) q* = q,(t; q°x, • • • , ql+h\ q°h • • • , # + * ) , 

where the 2(n+k) constants (q°, q°) are given initial values. 
Let these path curves be interpreted in the space of the varia­

bles (qi, • • • , qn+k, qi, - • • , q^h, t) and consider an arbitrary 
regular curvet C0 in the hyperplane / = 0 : 

C0: qs° = qs°(oi), qs° = q8°(a), (a0 S a ^ «i). 

The tube of path curves emanating from the curve Co is the 
locus defined by the equations 

(10) qs = q8(t, a ) , qH = g.(/, a ) , 

obtained from (9) by means of the equations of C0. 
Now consider the action integral in the form 

Ldt, 
o 

where t\ is a variable upper limit. When this integral is extended 
along a path curve on the tube, it becomes a function of a. Let 
the aggregate of values of t\ correspond to a simple closed circuit 
C of the tube. We introduce a new variable u, so that if 

* H. Poincaré, Méthodes Nouvelles de la Mécanique Céleste, 1899, vol. 3, p. 4. 
t It is sufficient to require that these functions be continuous, admitting 

continuous first derivatives, not all of which vanish simultaneously. 
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(12a) t = t(uy a), 

then 

dt dt(u, a) 
(12b) t(u0, a) = 0, /(MI, a) = h, — = = p > 0, 

for all values of a, where u\ and u0 are constants. This can be 
done in a variety of ways, so that p may be taken arbitrarily,* 
within certain limits. 

The integral (11) now becomes 

(13) J {a) = f lFdu, 

where 

^(<Zl> * ' * > Çn+k', q{ , • * * , <?n + fc, t', t) 

( ql qUu \ 

We next computet J'(ot), using Leibniz's rule, which is permis­
sible since we have all the desired continuity. Upon carrying 
out the differentiation, and integrating by parts, we find 

çu, rn+k,dL d dL\dqs 

J Wo L ,=i I dq8 dt dqs) da 

jdL d T »+* dL ml\àtl 

\dt dt\_ ZX dqs
 q'j) da] 

rn+ï dL dqs / »+* dL \dt~\ui 

+ \ T. — — + U-T, — ? . - • 
L s=i dq$ da \ 8=ai dqs / dajU(t 

Using (2), (3), and (5), we obtain from this 

* It is sufficient to require that p — p{t> a) be a positive integrable function 
of t for every a. 

f The prime denotes differentiation with respect to a. 
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(14) 
Ju9 L M I *-I da da da ) J 

r »+* dq9 dnui 

L a=i d<* daju<i 

Let us now integrate J'{a) around the curve C determined by 
U — U\\ 

f J'(a)da s f ' / ' (a)*» = J{ax) - / (a 0 ) = 0, 

since ce0 and ai correspond to the same points on the closed 
curve. Thus we have 

(15) 

I da i P Ë i Ë «"—- + ^T — \^\du 
•fut, J ut, L M V i-i ooi da da ) J 

+ T.P.~-H-\da^ Y,P*-f-da. 
^« 0 L «~i oa daU «/ «0 s=i da 

The integral on the right is taken around the curve Co, and that 
on the left around the simple closed circuit C. Since the right 
side is independent of the circuit C, the expression on the left 
of (IS) is an integral invariant of the Cartan type, as defined in 
§3. In case the system is holonomic, we get the usual Cartan 
invariant (see Introduction). Equation (15) includes as a special 
case the Poincaré invariant 

• 'a, Jo L h . i l i=i da da ) J 

ƒ» a\ n-j-fe 

]C Ps ~z~- da, 
•«i »+* dqa 

da 

when h is a fixed upper limit. These results may be stated in the 
following theorem. 

THEOREM. The non-holonomic dynamical system defined by (1) 
and (2) admits the relative integral invariant (15). 

5. A Dynamical Theorem. We have seen that the equations of 
motion of a non-holonomic system can be written in the Hamil-

Lh.il
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tonian form (4). Suppose that we consider an arbitrary system 
of differential equations 

(17) - ^ = 0 ?£ = P 
{ } dt Q" dt " 

where the Q's and P 's are any functions of (q8, pa> t) with the 
desired continuity. Let avi(q, t), av(q, /), \v(i), and H(qy p, t) be 
given functions, with continuity as required, and suppose that 

r * 
I da I p M Tdavi~ + av- -— \ X„ \du 

J a<t J « 0 L v~i \ i=-i oa da da J J 
(18) 

r «i r »+* dqs an 
^ <*„ L s=i da da J 

is a Cartan integral invariant of the system (17). This means 
that u — U\ determines a certain simple closed circuit C on the 
tube of trajectories of (17), and that the integral (18) is inde­
pendent of U\. On differentiating with respect to u\, and dropping 
the subscript, we have 

f a i T A j A dqi dt dqn+v\ 

J« 0 L v=\ \ *-i aa da da ; 
w+^ (dps dqs d dqs) dH dt d df\ 

+ E i — —- + P* -t H \da = 0. 
s=i I dt da dt da ) dt da dt daj 

Integrating by parts, we find 

J a0 L i=i V at dqi y=i ; da 

* (dpn+v dH | dqn+v 

v=i l dt dqn+y ) da 

,=i I dt dps) da 

( * dH dH) dtl 
+ < £ a , X , + >—\da = 0, 

KZi dt dt ) dal 

or 
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(19) 

r r * (dpi dH * ) 

* (dpn+v dH \ 

„=i I dt dqn+v ) 

V i - -̂ - —i 

( * dH dH) "I 
+ < Z <*A, - — - + } dt = 0. 

But p is a positive function, and, from the way in which it was 
introduced (see (12b)), it is arbitrary. Hence we may infer that 
each parenthesis vanishes separately. The resulting equations 
are precisely (4) and (5), those of a non-holonomic Hamiltonian 
system. Accordingly we have the following result. 

THEOREM. If the integral (18) is a Car tan integral invariant of 
the system of differential equations (17), for a given set ofVs, a„»'s, 
and av

1s1 and a given function H, then the system (17) is of the 
form (4), and consequently there is a non-holonomic dynamical 
system for which (17) are the equations of motion. 

The result is that the non-holonomic system is completely 
characterized by the integral invariant (18), which may be writ­
ten more suggestively in the form 

ƒ• /» t k / n 

I X) A" "! ]C dvidqi + avdt — dqn 
C J 0 v=l \ t=-l 

/» n+k 

+ I Z) Psdq» 

dt 

Hdt, 

it being understood that the upper limit t is a function of a 
determined by the curve C. 
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