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Hence by 9, (p¢")*3[(pg")*Z*] in T.
Hence by 20 and 19, (p¢")*-3 { [p(pg)' ]*[(p9)#']*} in T.
Hence by 9, (p-3¢)3[(p-3pq) (pg-3p)] in T.

23.2. [(p 3p9)(pg 3] 3(p 3¢ inT.

Proof. By 9 and 6, (pp')* in T, whence by 16, Z* in T.
Hence by 19, when we replace p by (p¢’)* and ¢ by Z*,
{[(pg)*Z2*](pg’)*' } *in T.

Hence by 9, [(pg")*Z2*]3(pg")* in T.

Hence by 20 and 19, {[p(p9)']*[(p0)#']*} 3(p¢)* in T.

Hence by 9, [(p=3p9) (pg3p)]3(p3¢) in T.

It will be noted that these proofs could be written out without
the use of the “star” notation, since p* serves merely as an ab-
breviation for p3p’, and (pq’)* as an abbreviation for p-3¢.
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ON INTEGRAL INVARIANTS OF NON-HOLONOMIC
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1. Introduction. It is well known that there are certain in-
tegral invariants associated with holonomic dynamical sys-
tems. Cartani demonstrated that it is possible to characterize
a Hamiltonian system by means of the relative integral in-
variant

> pidq; — Hadt.
C i
The purpose of this paper is to extend the theory to the case
of non-holonomic systems.
We shall adopt the following conventions in notation. There
are three ranges of indices, which we shall usually represent by

t Presented to the Society, June, 20, 1934. I wish to acknowledge my in-
debtedness to A. D. Michal for criticism and suggestions during the writing
of this paper.

1 E. Cartan, Leg¢ons sur les Invariants Intégraux, 1922, p. 13. Also W. F.
Osgood, this Bulletin, vol. 39 (1933), p. 882, Abstract No. 343.
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s,t,v,(s=1,2,---,nt+k;i=1,2,-- -, n;v=1,2,---,k).
Hereafter we shall not state explicitly these ranges for the in-
dices.

2. The Equations of Motion. Consider a non-holonomic dy-
namical system with »# degrees of freedom and #-+% natural co-

ordinates g1, - - -, ¢nt+k, subject to the non-integrable relations
n

(1) én+v = Z aviéi _I" ay,
=1

where the a’s are continuous functions of ¢, - * + , @uts, ¢, POS-

sessing continuous first partial derivatives. For such a system,
assumed conservative, the equations of motion are*

d oL oL k
L San, =1,
dt Bq. aq, y=1
2
d oL oL
+)\v, (Vzl"..’k)’

—‘Et— aq.n+v B a(IrH-v

where the N's are Lagrangian multipliers, functions of the time.
It is to be observed that in case the system is holonomic all the
N\'s are zero, and Lagrange’s equations hold in the usual form.

If we introduce new coordinates (qs, ps, £), where p,=0L/d¢,,
and set

n+k
(3) H = Z Psés - La
s=1
then equations (2) becomet
dgs O0H
at ps
dp; oH k
i" = - - - Zavi)\v,
(4) dt an =1
APy oH
Pt _ o,
dt aQn-}—v

* P. Woronetz, Uber die Bewegung eines starren K irpers, Mathematische
Annalen, (1911), p. 421; also Whittaker, Analytical Dynamics, 1927, p. 214,

t For the transformation process, see Appell, Traité de Mécanique Ra-
tionnelle, vol. 2, 1911, p. 403.
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and we find, in addition, that

dH L oL oH oL
> o — = ez

5 — = .
2 /2 ot ot ot

3. Integral Invariants.* Consider a system of differential equa-
tions
dx;
(6) = Xi(x, -+ ) %y ),
where the X's are continuous, together with all of their partial
derivatives of the first order, in the neighborhood of the point

(%1% - - -, x.% 0), and where not all the X's vanish at this point.
Then we can write the solution in the form
(7) xi:fi(t; xO,...’x"()).

Let the initial values be made to depend upon a parameter:
x0 = x2f(a), (w0 = a =),

these functions being continuous, with continuous first deriva-

tives, such that
n dx’_o 2
> < > > 0.

i1 \ da

Putting these values in (7), we get equations of the form

% = Filt, a) = filt; x0(a), - -, #2(a)],

and these equations represent a fube of trajectories of the given
system (6). If we envisage a regular curve C encircling this tube,
in such manner that each trajectory cuts C once and only once,
in a point for which >0, then we may speak of C as a simple,
closed circuit of the tube of trajectories.

Now let functions 4;(x1, - - -, %, £) and A (%1, - - -, %4, ) be
given, and consider
id L dx; ot
(8) > Adx; + Adt = f [ZA,- +A—-]da.
C i=1 a, L i=1 da da

If this integral has the same value for all such simple closed

* For other forms of definition, see Appell, loc. cit., vol. 2, p. 464.
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circuits C encircling an arbitrarily chosen tube of trajectories of
(6), it is called a relative integral invariant of the system (6).
If, in particular, the circuit corresponds to a fixed instant ¢, then
the integral has the form

f 3 didw; = f '3 a2 .
¢ i=1 ay  i=1 da

This we shall call a Poincaré* integral invariant, while (8) will
be referred to as a Cartan invariant.

4. The Integral Invariant. Let there be given a non-holonomic
system, subject to the kinematical conditions (1), and having
the equations of motion (2). These two sets of equations define
the ¢'s and N's as functions of the time. There is a 2(n+k)-
parameter family of path curves of the system, represented by
the functions

O 0= q:(t; 0% - -+, Qhans 45, 0 0 0y §04n),

where the 2(n+k) constants (¢°, ¢°) are given initial values.

Let these path curves be interpreted in the space of the varia-
bles (g1, * * *, @ntk» G1y * * * » Gu+k, t) and consider an arbitrary
regular curvel C,in the hyperplane ¢=0:

Co: g = ¢’ (a), §d = ¢ (a), (00 £ a £ aj).

The tube of path curves emanating from the curve C, is the
locus defined by the equations

(10) Qs = Qs(t; Ot), (is = q's(t) Ol),

obtained from (9) by means of the equations of C,.
Now consider the action integral in the form

tl
(11) J = f Lat,
0

where ¢, is a variable upper limit. When this integral is extended
along a path curve on the tube, it becomes a function of «. Let
the aggregate of values of ¢ correspond to a simple closed circuit
C of the tube. We introduce a new variable %, so that if

* H. Poincaré, M éthodes Nouvelles de la M écanique Céleste, 1899, vol. 3, p. 4.
t It is sufficient to require that these functions be continuous, admitting
continuous first derivatives, not all of which vanish simultaneously.
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(12&) L= t(%, a)y

then
dt  ot(u, o)

(12b) t(uo, a) = 0, t(’ul, (2) = t1, —_—=———=p > 0,
du ou

for all values of «, where u; and u, are constants. This can be
done in a variety of ways, so that p may be taken arbitrarily,*
within certain limits.

The integral (11) now becomes

(13) J(a) = f Fdu,
where
F(ql) C oty Gtk 41,, tt q",-Hw t,, t)
g1 Gtk ,
=L(q1a"'1qn+k;7"", V J t).t,
dt ags
o= — D= = Gt
du’ 1 ou 1

We next compute} J’(a), using Leibniz’s rule, which is permis-
sible since we have all the desired continuity. Upon carrying
out the differentiation, and integrating by parts, we find

* ntk (9L d 3L g,
o [ Bt

s=1 aqs dt aq.s do

N {aL d [L oL ]} at]d
i I S LR P
o d = 9, "1 ba

ntk 9L g, k9L 9t |
AEEE(-E R

s=1 6q's da s=1 aés daly,

Using (2), (3), and (5), we obtain from this

* It is sufficient to require that p=p(¢, @) be a positive integrable function
of t for every a.
t The prime denotes differentiation with respect to .
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J(a) = ful [Z{Zn:a,,,igl ,ﬁ—@—'ﬂ} )\,]du

0 y=1\ =1 Jda da
(14) wt o Y
[ Enon]
E ? Jda Aoty

Let us now integrate J'(o) around the curve C determined by
U=uy:

fc T'(@)da = f T(@)de = J(az) — J(ao) = 0,

since ay and «a; correspond to the same points on the closed
curve. Thus we have

o pw " oq 0 Oqui
fdaf [Z{Za,,—q— ———qi}x.]du

y=1 \ i=1 Jda da da

n+k 6a a;nt+k 0
—|-f [  _m :lda— Zps

Jda ay s=1

(15)

The integral on the right is taken around the curve Cy, and that
on the left around the simple closed circuit C. Since the right
side is independent of the circuit C, the expression on the left
of (15) is an integral invariant of the Cartan type, as defined in
§3. In case the system is holonomic, we get the usual Cartan
invariant (see Introduction). Equation (15) includes as a special
case the Poincaré invariant

qs d n+v
f daf [ {Ea“ ——qi} )\,:ldt
v=1 \ =1 o Jda

a ntk

+ Zps a,

o

(16)

when {; is a fixed upper limit. These results may be stated in the
following theorem.

THEOREM. The non-holonomic dynamical system defined by (1)
and (2) admits the relative integral invariant (15).

5. A Dynamical Theorem. We have seen that the equations of
motion of a non-holonomic system can be written in the Hamil-


Lh.il
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tonian form (4). Suppose that we consider an arbitrary system
of differential equations

dq, dp,
a dt

@17 = P,

where the Q’s and P’s are any functions of (¢, ps, £) with the
desired continuity. Let a,:(q, ?), a.(q, £), \(8), and H(q, p, ¢) be
given functions, with continuity as required, and suppose that

a *y i aq; ot 0 niy
f daf [Z{Za,,—q— ———qi}x,]du
y=1 1==] a 60: 6a

n+k 3%
+f [ —H ]da
a

is a Cartan integral invariant of the system (17). This means
that u =wu,; determines a certain simple closed circuit C on the
tube of trajectories of (17), and that the integral (18) is inde-
pendent of #;. On differentiating with respect to %1, and dropping
the subscript, we have

@y i (')t 0Qn1r
QISR
« y=1 \ =1 Ja aa da

itk (dp, aq, d g, dH ot d d¢
+ { s T } H— -"] da =0
Z dt Oda tr dt da dt Oa dt da “

s=1

(18)

Integrating by parts, we find

oy dpl
fa p[g{dt 6q, Ea,,} da

0

k dﬂl’ H anv
+Z{P++ _)\y} n+

y=1 dt aqn+v da
n+k dqs apa
E{ e
s=1 dat 61;3 da
k dH OH)Y ot
N, — — + —p— |da = 0,
+ {g—_:l dt + ot }aa] *

or
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n dpt }
Ve dl
fcp[g{dt aq,+2a 1

=1
ko (dpnis oH
+Z{j’++ —)\y}dqn+y
(19) y=1 dt aQn+v
n+k dQS aH
- b,
E dt 3?8 ?
k dH oH
+ { v)\v—‘—'“ ———}dt]=0.
Lot

But p is a positive function, and, from the way in which it was
introduced (see (12b)), it is arbitrary. Hence we may infer that
each parenthesis vanishes separately. The resulting equations
are precisely (4) and (5), those of a non-holonomic Hamiltonian
system, Accordingly we have the following result.

THEOREM. If the integral (18) is a Cartan integral invariant of
the system of differential equations (17), for a given set of N's, a,’s,
and a,’s, and a given function H, then the system (17) is of the
form (4), and consequently there is a non-holonomic dynamical
system for which (17) are the equations of motion.

The result is that the non-holonomic system is completely
characterized by the integral invariant (18), which may be writ-
ten more suggestively in the form

t ok n
f f Z)x, { Z aidq; + a,dt — dqn+.,,} dt
CY o0 r=1 :

=1
n+k

+ 2 budg, — Hdt,

C  s=1

it being understood that the upper limit ¢ is a function of «
determined by the curve C.
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