AN INVOLUTORIAL LINE TRANSFORMATION DE-TERMINED BY A BILINEAR CONGRUENCE OF TWISTED ELLIPTIC QUARTIC CURVES*

BY VIRGIL SNYDER AND J. M. CLARKSON

1. Introduction. Let there be given two elliptic space quartic curves α , β , bases, respectively, of the two pencils of quadrics $H_1-\alpha H_2=0$, and $K_1-\beta K_2=0$. The curve $C_4(\alpha,\beta)$ of intersection of a quadric of one pencil with one of the other meets each of α,β in 8 points. As the parameters α,β take on all values independently, $C_4(\alpha,\beta)$ describes a system of ∞ 2 (a congruence of) elliptic space quartics. Through an arbitrary point (u) passes just one $C_4(\alpha,\beta)$, namely that for which $\alpha=H_1(u)/H_2(u)$ and $\beta=K_1(u)/K_2(u)$.

A quadric of the system

$$(1) \qquad (H_1 - \alpha H_2) - \rho (K_1 - \beta K_2) = 0$$

is determined by three independent linear relations among α , β , ρ , hence by any three points of space. If these three points be chosen on a straight line t, then the quadric of (1) determined by the three points contains t as a generator. Thus t is a bisecant of every elliptic quartic lying on the quadric. But the values of α , β so determined fix a $C_4(\alpha, \beta)$ of the congruence and it lies on the quadric of (1). Hence an arbitrary line t of space is bisecant to just one $C_4(\alpha, \beta)$.

Now, let $\gamma = \sum_{i=1}^4 c_i z_i = 0$ be an arbitrary fixed plane. Any line t meets γ in a point P. The quadric Q(t) of (1) which contains t as a generator has another generator t' also passing through P, and t' is likewise bisecant to the $C_4(\alpha, \beta)$ determined by t. The line transformation $t \sim t'$ is involutorial and birational. It is the purpose of this paper to study this involution I. \dagger

^{*} Presented to the Society, March 30, 1934.

[†] A brief synthetic outline, mostly without proofs, of parts of this paper is given by J. de Vries: On an involution among the rays of space, which is determined by a bilinear congruence of twisted elliptical quartics, Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam, vol. 22 (1919), pp. 493–496.

2. The Order of the Transformation. Let the Plücker coordinates of t be y_i and those of t' be x_i , $(i=1, 2, \dots, 6)$. The point P in which t meets γ has coordinates which are linear in y_i , and any other two points A, B on t have coordinates each linear in y_i . The quadric Q(t) of the system (1) containing t as a generator is

(2)
$$K_{2}^{6}(y) \left[H_{2}^{6}(y) H_{1}(z) - H_{1}^{6}(y) H_{2}(z) \right] + \left[H_{2}^{6}(y) K_{2}^{6}(y) K_{1}(z) - K_{1}^{6}(y) K_{2}(z) \right] = 0,$$

where

$$H_{1}^{6}(y) = \begin{vmatrix} H_{1}(A, B) & H_{1}(A) & H_{1}(B) \\ K_{1}(A, B) & K_{1}(A) & K_{1}(B) \\ K_{2}(A, B) & K_{2}(A) & K_{2}(B) \end{vmatrix},$$

$$H_{2}^{6}(y) = \begin{vmatrix} H_{2}(A, B) & H_{2}(A) & H_{2}(B) \\ K_{1}(A, B) & K_{1}(A) & K_{1}(B) \\ K_{2}(A, B) & K_{2}(A) & K_{2}(B) \end{vmatrix},$$

$$K_{1}^{6}(y) = \begin{vmatrix} K_{1}(A, B) & K_{1}(A) & K_{1}(B) \\ H_{1}(A, B) & H_{1}(A) & H_{1}(B) \\ H_{2}(A, B) & H_{2}(A) & H_{2}(B) \end{vmatrix},$$

$$K_{2}^{6}(y) = \begin{vmatrix} K_{2}(A, B) & K_{2}(A) & K_{2}(B) \\ H_{1}(A, B) & H_{1}(A) & H_{1}(B) \\ H_{2}(A, B) & H_{2}(A) & H_{2}(B) \end{vmatrix}.$$

The parameters λ , μ of the two reguli on Q(t) are each of degree 12 in y_i . The Plücker coordinates of a generator of the λ -regulus are of degree 2 in λ and those of a generator of the μ -regulus are of degree 2 in μ . If now we consider t' as being of the λ -regulus and t of the μ -regulus, we have

(3)
$$\xi x_i = \phi_i(y), \qquad (i = 1, 2, \dots, 6),$$

where the ϕ_i are functions of degree 24 in y_i , and ξ is a constant. Thus the line transformation $(3) \equiv t \sim t'$ is of order 24.

3. The Singular Lines of the Transformation. Suppose the line

a to be bisecant to the fixed quartic $\alpha \equiv H_1 = H_2 = 0$. There is one quadric of the pencil $H_1 - \alpha H_2 = 0$ which contains a as a generator. Through each point of a passes just one quadric of the second pencil $K_1 - \beta K_2 = 0$, and hence a is bisecant to ∞^1 $C_4(\alpha, \beta)$ of the congruence. However, since the conjugate a' of a in I must pass through the point where a meets λ , a' is uniquely determined and is bisecant to only one of the ∞^1 $C_4(\alpha, \beta)$ met twice by a. Thus a is not singular in a. Also, the lines a bisecant to the fixed quartic a0 are not singular.

Can there exist a line s not bisecant to either fixed curve α , β and yet bisecant to ∞^1 $C_4(\alpha, \beta)$ of the congruence?

Let (u) be a fixed point of space. It determines the quadric $H(u) \equiv H_2(u)H_1(z) - H_1(u)H_2(z) = 0$ of the first pencil and $K(u) \equiv K_2(u)K_1(z) - K_1(u)K_2(z) = 0$ of the second. H(u) and K(u) meet in $C_4(u)$. Let (v) be any other point on $C_4(u)$. Then

(4)
$$\begin{cases} H_2(u)H_1(v) - H_1(u)H_2(v) = 0, \\ K_2(u)K_1(v) - K_1(u)K_2(v) = 0. \end{cases}$$

Let $\lambda u + \bar{\mu}v$ be a fixed point on the line $s \equiv (u)(v)$. The quadric $H(\bar{\lambda}u + \bar{\mu}v)$ determined by it meets s in another point $\lambda u + \mu v$, where

(5)
$$\begin{cases} \lambda = \overline{\mu} [H_2(v) H_1(u, v) - H_1(v) H_2(u, v)], \\ \mu = \overline{\lambda} [H_2(u) H_1(v, u) - H_1(u) H_2(v, u)]. \end{cases}$$

If $K(\bar{\lambda}u + \bar{\mu}v)$ also passes through $\lambda u + \mu v$, we have

(6)
$$\frac{H_2(v)H_1(u,v) - H_1(v)H_2(u,v)}{H_2(u)H_1(v,u) - H_1(u)H_2(v,u)} = \frac{K_2(v)K_1(u,v) - K_1(v)K_2(u,v)}{K_2(u)K_1(v,u) - K_1(u)K_2(v,u)},$$

which is independent of the ratio $\overline{\lambda}/\overline{\mu}$. Thus if (6) and the preceding conditions are satisfied, every $C_4(\alpha, \beta)$ of an entire pencil has s as a bisecant. Hence s is fundamental in I.

From (4), we have

(7)
$$\begin{cases} H_1(u)/H_2(u) = H_1(v)/H_2(v) = p, \\ K_1(u)/K_2(u) = K_1(v)/K_2(v) = q. \end{cases}$$

Substituting (7) in (6) we have

(8)
$$H_2(v)/H_2(u) = K_2(v)/K_2(u),$$

provided $H_1(u, v) \neq pH_2(u, v)$ and $K_1(u, v) \neq qK_2(u, v)$. Thus, from (8) and (7), we have

(9)
$$\frac{H_1(v)}{H_1(u)} = \frac{H_2(v)}{H_2(u)} = \frac{K_1(v)}{K_1(u)} = \frac{K_2(v)}{K_2(u)},$$

or, if $H_1(u, v) = pH_2(u, v)$ and $K_1(u, v) = qK_2(u, v)$,

(10)
$$\begin{cases} \frac{H_1(u)}{H_2(u)} = \frac{H_1(v)}{H_2(v)} = \frac{H_1(u, v)}{H_2(u, v)}, \\ \frac{K_1(u)}{K_2(u)} = \frac{K_1(v)}{K_2(v)} = \frac{K_1(u, v)}{K_2(u, v)}. \end{cases}$$

But the first line of (10) states that the entire line s lies on H(u) and H(v), while the second line makes a similar statement concerning K(u) and K(v). Thus every $C_4(\alpha, \beta)$ of the pencil $\bar{\lambda}/\bar{\mu}$ has s as a component, and $\lambda = \mu = 0$. Hence the involution on s is established by the equations (9).

Now let the point (u) be an arbitrary point of space. If (9) are satisfied, then (v) must be one of the base points of a net of quadrics, another of which base points is (u). Hence, through an arbitrary point of space pass 7 fundamental lines s of I.

Since λ/μ depends linearly on $\bar{\lambda}/\bar{\mu}$, the two pencils $C_4(\lambda u + \mu v)$ and $C_4(\bar{\lambda}u + \bar{\mu}v)$ of quartics of the congruence are projective. These curves generate a quartic surface F_4 which contains the line s. A plane π through s meets each C_4 of the two pencils in two other points, each of which determines the other uniquely. This involution in π is rational and hence must be central. The residual intersection of F_4 by π is a cubic π_3 generated by the pairs of points of the involution. The lines t' in π pass through a point P on π_3 . As π turns about s, P describes a curve.

Among the quadrics of the pencil

(11)
$$(H_1 - \lambda H_2) - \rho(K_1 - \mu K_2) = 0$$
, $(\mu \text{ projective with } \lambda)$,

one contains s. This quadric meets F_4 in s and a residual curve C_3 , which is the locus of P. The curve C_3 is a space cubic meeting s twice. C_3 and s form the base of a pencil of quadrics each of which meets F_4 again in a $C_4(\alpha, \beta)$ of the original congruence.

From any point on s, say Q, in any plane π through s passes

one line of the pencil through P. Thus Q is the vertex of a cubic cone with s as double generator, each generator of which meets some C_4 of the pencil twice. Hence s is singular in I. Also, since an arbitrary plane ϕ meets s in some point Q, in ϕ there lie 3 bisecants of curves C_4 of the pencil. Thus, the fundamental lines s form a congruence (7, 3).

Through an arbitrary point P of the plane γ passes one $C_4(\alpha, \beta)$. The bisecants of this $C_4(P)$ through P generate a cubic cone every generator s^* of which is the conjugate in I of any one of them. These lines s^* are therefore fundamental of the second kind and are also on the locus of invariant lines of I. They form a complex whose order is discussed in §5.

Any line t_{γ} in the plane γ is bisecant to one $C_4(\alpha, \beta)$. The bisecants of this $C_4(t_{\gamma})$ which meet t_{γ} belong to one regulus of the quadric $Q(t_{\gamma})$ of (1) and t_{γ} belongs to the other regulus of $Q(t_{\gamma})$. Thus the conjugate of t_{γ} in I is this quadric regulus, plus the two cubic cones of the complex (s^*) whose vertices are the points where t_{γ} meets $C_4(t_{\gamma})$. The plane field $[\gamma]$ of lines is fundamental.

- 4. The Invariant Lines of the Transformation. The invariant lines of (3) form a complex whose order is discussed in §5.
- 5. Conjugates in I of a Pencil, a Bundle, and a Plane Field of Lines. Given a pencil of lines (T, τ) . Each line t of the pencil is bisecant to one $C_4(\alpha, \beta)$. We shall define the order of the surface ψ generated by $C_4(t)$ as t describes (T, τ) .

Let P be any point on the fixed curve α . Through P pass ∞^1 $C_4(\alpha, \beta)$, the intersections of the quadric K(P) and the pencil $H_1-\alpha H_2=0$. The quadric K(P) meets τ in a conic. The pencil $H_1-\alpha H_2=0$ meets this conic in the groups of an I_4 , the points of each group lying on a C_4 of the system. Let A be any point on the fixed conic K(P), τ . The conic H(A), τ meets the fixed conic in A and three other points A'. The line TA meets the fixed conic in one other point B. How often does B coincide with one of the points A'?

Let f=0 be the conic K(P), τ , and $\phi-\lambda\phi'=0$ be a conic of the pencil. Through the points of intersection of f and $\phi-\lambda\phi'$ pass a third conic through T:

$$f(\phi_0 - \lambda \phi_0') - f_0(\phi - \lambda \phi') = 0.$$

When (12) is composite one component passes through T and meets a C_4 of the ∞^1 C_4 through P. The discriminant of (12) is cubic in λ , and hence there are three lines of (T, τ) each a bisecant to one C_4 of the pencil through P. On the surface ψ the fixed quartic α is triple. In like manner β is also triple.

The quadric K(P) meets ψ in the three generating C_4 through P and in the curve β counted three times. Thus the order of the complete intersection of K(P) and ψ is 24. Hence ψ is of order 12.

Each line of (T, τ) meets its associated C_4 in two points. There is one $C_4(\alpha, \beta)$ passing through T. This $C_4(T)$ meets τ in three other points each of which makes with T a corresponding pair. Hence T is triple on the locus of associated pairs, and this locus is therefore a plane quintic τ_5 : T^3 . The quintic τ_5 passes through the four points α , τ and the four points β , τ .

If (L, λ) is any other pencil of lines and λ_{δ} the corresponding quintic curve, then λ_{δ} meets ψ_{12} in 60 points, 12 of which are on α and 12 on β . The other 36 points must be arranged in 18 pairs. The pencil (L, λ) then contains 18 bisecants of the C_4 which generate ψ_{12} ; hence the bisecants of the ∞^1 C_4 having each one bisecant belonging to a given pencil (T, τ) form a line complex of order 18.

The curve τ_5 discussed immediately above meets the line τ , γ in 5 points P, and hence the pencil (T,τ) contains 5 lines s^* (see §3). Thus the complex (s^*) is of order 5. It is the locus of invariant lines of the transformation (3).

We shall now determine the order of the ruled surface ϕ , conjugate under I of the pencil (T, τ) . The lines t of (T, τ) meet γ in the points of τ , γ . The curve τ_5 , locus of the pairs of points in which t meets its associated $C_4(\alpha, \beta)$, meets τ , γ in 5 points P_0 , the conjugate of t through each P_0 being the generators of an elliptic cubic cone, vertex at P_0 . Through each point of τ , γ other than P_0 passes only one generator of ϕ , and hence τ , γ is a simple directrix of ϕ . Thus the order of ϕ is one more than the number of lines in which an arbitrary plane through τ , γ meets ϕ (other than τ , γ itself). When t is given a $C_4(\alpha, \beta)$ is fixed. This $C_4(t)$ meets τ in 4 points, two of which are on t, the other two on a line t meeting t. As t describes t, t, the line t envelops a conic and the point t, t traces a cubic curve in t. This cubic meets t, t in three points t at each of which t is t.

 τ meets ϕ in five lines TP_0 , three lines TQ_0 , and in the line τ , γ . Hence ϕ is of order 9 and the conjugate under I of an arbitrary plane pencil (T, τ) is a composite ruled surface of order 24 consisting of a rational ruled surface of order 9 and five elliptic cubic cones.

A bundle of lines [M] with vertex M is transformed by I into a congruence. An arbitrary line t of [M] is bisecant to just one $C_4(\alpha, \beta)$; through an arbitrary point N pass two bisecants u_1 , u_2 of this $C_4(t)$. The line t meets γ in a point P and u_1 , u_2 meet γ in two points Q_1 , Q_2 . Then Q_1 , Q_2 correspond to P. To each point Q correspond two points P_1 , P_2 . Thus there is set up in γ a (2, 2) correspondence. Whenever it happens that P coincides with either Q_1 or Q_2 , then the conjugate of t in I is the line u_1 or u_2 . Since N was chosen arbitrarily, there can be in general only a finite number of such coincidences in γ . Now, as P describes a line in γ , the line t describes a pencil of |M| and we have seen (§5) that the bisecants of the $C_4(\alpha, \beta)$ to which the lines of a pencil are bisecants form a complex of order 18. Hence Q_1 and Q_2 describe a curve of order 18 in γ . The number ξ of coincidences in an (α_1, α_2) correspondence in a plane is given by

(13)
$$\xi = \alpha_1 + \alpha_2 + \beta - \eta - \zeta,$$

where β is the number of points Q on an arbitrary line whose corresponding points P lie on another arbitrary line, η the order of the curve each point of which is a coincidence, and ζ the class of the curve of coincidences. † Thus in our case we have

$$\xi = 2 + 2 + 18 - 0 - 0 = 22.$$

Hence the order of the congruence which is the conjugate under I of [M] is 22.

The curves $C_4(\alpha, \beta)$ having lines of [M] as bisecants generate a surface of order 5 (see §5, fifth paragraph). Hence in γ there is a curve γ_5 each point of which is the vertex of a cubic cone of singular lines s^* (§3). These lines s^* are also invariant under I and hence through M pass all of the generators of a quintic cone each of which is invariant. Thus M is a singular point of fifth order for the conjugate congruence.

[†] H. G. Zeuthen, Lehrbuch der Abzählenden Geometrie, pp. 271-274.

Let μ be an arbitrary plane of space, ν the plane through M and γ , μ . To each line t of [M] correspond six bisecants of $C_4(t)$ lying in μ . Let Q_1, Q_2, \dots, Q_6 be their points of intersection with γ , μ , and let P be the point where t meets γ . We say that Q_1, \dots, Q_6 correspond to P. The line complex of order 18 corresponding to the pencil (Q, μ) has 18 lines in the pencil (M, ν) ; thus to each Q correspond 18 points P. All of the points Q lie on γ , μ and hence as P describes a straight line in γ there will be in general no points Q on an arbitrary line in γ . Formula (13) then becomes

$$\xi = 6 + 18 + 0 - 0 - 0 = 24.$$

The class of the congruence conjugate to [M] is 24.

The transformation (3) is involutorial, and so the order of the congruence conjugate to an arbitrary plane field $[\mu]$ is 24, the number of lines common to the conjugate of an arbitrary bundle [M] and to the plane field $[\mu]$. The class is found as follows. The only lines t in μ whose conjugates t' can lie in an arbitrary plane ν must pass through the point $O \equiv \gamma$; μ , ν and the lines t' must also pass through O. The ruled surface ϕ_{24} conjugate to the pencil (O, μ) breaks up into the pencil (O, μ) , the cubic cone that projects $C_4(O)$ from O counted three times (once for each of the three generators belonging to (O, μ)) and a cone of order 14. Hence in ν lie 23 lines t' conjugate to lines t in μ . Therefore the conjugate under I of a plane field $[\mu]$ of lines is a congruence (24, 23).

CORNELL UNIVERSITY