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ON T H E SUMMABILITY OF DERIVED CONJUGATE 
SERIES OF T H E FOURIER-LEBESGUE TYPE* 

BY A. H. SMITH 

1. Introduction. We assume throughout that the function ƒ (x) 
is integrable in the sense of Lebesgue and satisfies the periodicity 
condition ƒ (x+2IT) ~f(x) ; then the series 

00 

(1) 2Z (~~ l)rl2\yr(av sin vx —• bv cos vx)], (r even), 

and 
oo 

(2) X ( - l ) ( r ~ 1 ) / 2 k ( ^ cos vx + bP sin vx)], (r odd), 

where av, bv are the Fourier coefficients, are defined to be the 
rth derived conjugate series of the Fourier-Lebesgue type. 

In a paper published in 193If, Bosanquet and Linfoot intro­
duced a regular method of summation which is weaker than that 
of the Cesàro means of any order a > 0 and is defined as follows. 
The series ^2av is said to be summable (a, /3) to 5, where either 
a > 0 , or a = 0, 0 ^ 0 , if 

J2 B(l - v/n)a log-^3 ( ) av -> 5, as n -» oo, 
p<nL M ~ v/n/ J 

for C sufficiently large,J where B — (log C)&. 
The object of this paper is to apply the Bosanquet-Linfoot 

method of summation to the series (1) and (2).§ 
* Presented to the Society, October 28, 1933. 
t L. S. Bosanquet and E. H. Linfoot, On the zero order summahility of Fourier 

series, Journal of the London Mathematical Society, vol. 6 (1931), pp. 117-126. 
% They have shown tha t it is equivalent to say "for every C > 1 " ; see L. S. 

Bosanquet and E. H. Linfoot, Generalized means and the summahility of Fourier 
series, Quarterly Journal of Mathematics, Oxford series, vol. 2 (1931), pp. 207-
229. 

§ This method has been applied to Fourier series, the conjugate series and 
the rth derived Fourier series. See the two papers of Bosanquet and Linfoot 
given above and A. H. Smith, On the summahility of derived series of the Fourier-
Lebesgue type, Quarterly Journal of Mathematics, Oxford series, vol. 4 (1933), 
pp. 93-106. 
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2. Notation and Definitions. We define the following func­
tions: 

0(0 s ƒ(* + 0 + ƒ0 ~ 0 ~ 2/(x), 
Hi) s ƒ(* + /) - ƒ(* - /), 

(3) 

(4) 
I <K*)> 

(f even), 

(f odd), 

(5) fir(/) = I I cor(u) I dw, 
^ 0 

ƒ' ' I co r (w) I J — — d«, 
o ur 

(7) ff*iai/î(l-«) s Buk(\-uy-Hog-4 Y 
\l — u/ 

where B = (log C)' , for * è 0 , a ^ l , 0 ^ 0 , 

(8) 

(9) 

Qk,a,p{t) = I Hk,a,ia(l"~u) cos tu du, 
J o 

Qk,a,p{t) = I Hkta,fi(l — u) sin tu du, 
J n 

1 fn 

(10) ^aAn> 0 = I #0,a,/3(l — ?/») S m ^ <fr> 
7T J o 

(11) «<'>(*) ^ Hm - - - ^ / , 

whenever the limit on the right hand side exists. The expression 
g(r)(x), by definition the rth derived conjugate function, is a 
generalization of the conjugate function 

1 f t(t) 
(12) s(*) s g^(x) = lim — -<». 

The yfeth derivative of \a,&(ny t) with respect to t will be de­
noted by \i*jg(w, 2). I t can be expressed in terms of Qkta,&(nt) 
or Qk,a,p(nt) according as k is even or odd. Finally, we shall 
define 

f °° -CD 
(13) ƒ s ƒ„,,,,(/; *) » ( - l)H-i ^r{t)\;+l^n, t)dt. 

J o 



408 A. H. SMITH [June, 

3. Lemmas. The first three lemmas are stated without proof.* 

_ LEMMA 1. For k^O, a=gl, /3^0, the functions Qh,a,»{t) and 
Qk,a,p(t) are bounded in (0, <»), and for large values of t, Ck+2 
being a constant, 

+ 0(±) + 0(-l-). 
\tk+y \t« log/31) log/3 

LEMMA 2. The f unction \^(nt t) is bounded in (0, oo) f or fixed 
n, where k^O, a ^ l , /3^0 ; and f or large values of t, when k^O 
and p^O, 

A« j (» , 0 = -~~ + 0(n~H-c*+i+«) log-/3 «0, 

(a = k + 1 + 8, 0 ^ S < 2), 

= h 0(n-2r<*+8>), («è * + 3). 

LEMMA 3. Whena>l,p^0, r^O, 

ƒ* °°-(2r) 
Xa,/3(^, /) sin *// J/ 

0 

= ( - 1)'B(1 - v/n)"-1 log-^( )v2r, (0 ^v S n), 
\ 1 — v/n/ 

= 0, (* > »); 

ƒI 00 

(2r4-l) 
^a,/3 (n9 t) COS *>/<// 

0 

= ( - \)rB{\ - v/n)"-1 log-^3 ( J ^H-i (fi£v£ »), 

= 0, ( ? > » ) . 

* Lemma 1 was proved in an earlier paper, cited above (Lemma 2.1). 
The proofs of Lemmas 2 and 3 are analogous to those of Lemmas 2.2 and 2.3 
of that paper. 
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LEMMA 4. At every point where f (x) is finite the expression J 
of (13) is the [n]th* mean of order (r, jS^O) of the rth derived 
conjugate series, r^ 1, of the Fourier series corresponding to f{x). 

PROOF. I t follows from Lemma 2 that, for fixed n, X« J?(w, /) is 
absolutely integrable and of bounded variation in (0, oo ) when 

k ^ 1, a = k + 1, j8 è 0. 

Thus, substituting for [f(x + t)—f(x — t)] its Fourier series, em­
ploying a theorem of W. H. Youngf and Lemma 3, we have 

ƒ [f(x + 0 - ƒ(* - 0] A£M.*(», 0 * 

(14) = ( - iyZ \B(I - p/ny iog-e (- r V r 

X(— av sin *>x + bv cos i>#) , 

where r^ 1, /3^0. Similarly, using the fact that 

ƒ. 
— (2r4-D / 

0 

vanishes (integration and Lemma 2), we have at every point 
where f(x) is finite 

f \J(X + t) + f(x - /) - 2/(^)]X2r++2^(^, 0 * 

,,2r+l (15) = ( - 1 ) ' Z [ « ( I - ^ ) 2 r + i i o g ^ ( - - _ N ) I , 2 

X (av cos !># + bv sin *>#) , 

where r ^ 0 , /3^0. By combining (14) and (15), the lemma 
follows. 

4. Summability Theorems. Our main result will now be dem­
onstrated. 

* Where [n] is the largest integer not greater than n. 
f E. W. Hobson, The Theory of Functions of a Real Variable and the Theory 

of Fourier Series, vol. 2, 2d éd., 1926, p. 583. 
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THEOREM 1. If the function f(x) is iniegrable in the sense of 
Lebesgue and satisfies the periodicity condition f(x + 2w) =f(x), 
then the rth derived conjugate series, r ^ 1, is summable (a, /3) for 
a = r, /3>1 to g(r)(x) whenever the following conditions are satis­
fied'. 

(i) f(x) is finite; 
(ii) tir(t)=o(tr+l); 

and 
(iii) g(r)(x) exists. 
(See (5) and (11).) 

PROOF. Assume that at the point x the conditions of the 
theorem are satisfied. Let Kh K2, Kz denote positive numerical 
constants. Choose e arbitrarily small, then A so that 

(16) — ƒ \<*r(u)\du£t, (O^tgA). 

Next choose n so that nA >e, divide the interval (0, oo) into 
(0, e/n), (e/n, A), and (A, oo), and denote by 7i, J%, and Jz the 
respective portions of 7 of (13). 

Expressing X r+x>p(n, t) in terms of the bounded quantity 

if r is even [odd], and then using condition (ii), we have 

(17) \jl\£K1\—\ J | «r(0 | dt = 0(1), 

as n—>oo . In the interval (e/n, oo ), we have 

_(r) ( - l) rr! 
Vn.*(»M) = 1 — — - + 0 ( r ^ + 1 ) log-* nt). 

irtr+l 

Set 7 a = / a + 7 2 " and 7 , s J / + 7 3 " , where 

- r! 
ƒ 2' ss I ^^~ dt 

tr+l 
(18) 

• rl rA 

Tt J e/n 

j{'\ = ol f I cor(0| r ^ « lor* fi/ <Öj, 

with similar definitions for J( and 73". 
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Let us next investigate J2". Integrate by parts; the integrated 
term vanishes for /3 > 1 as w—><*> ; hence the discussion of J2' 
reduces to that of the two integrals in the expression 

K2(r + 1) f Or(/)r ( r+2) log-" nt dt 

+ K2p f S2r(/)r<'+2> log~<"+l> ntdt. 
J e/n 

Now by (16) 

ƒ• A /» A 

Qr(t)t-
(r+2) log"" ntdt ^ e I r 1 log-" »/ 

e/n J e/n 

* 

< —^—(1 - log-"+1rc,4), 
1 8 - 1 

which for/3 > 1 is arbitrarily small with e, since nA >e. Similarly, 
for ]8>1, the second integral of (19) is arbitrarily small with e. 
Thus for /3>1, 

(20) J2" -> 0, 

as w—>oo. Finally, since f(x) is periodic, choose g so that 
2(q-l)w^A<2q7r; then 

L_v i l] 
(2ir) r+1ZÏ " r+1 log" 2mrv) J 

and thus for j8>l , 

(21) / . " - > 0 , 

as rc-^oo. Hence from (17), (18), (19), (20), and (21), we have 

-I r °° wr(/) . - r\ r °° wr(/) 

+ 

- r! f °° wr(/) - r\ r 
lim ƒ = lim I dt = lim I 
w—>oo rc—>oo 7T •/ e / n /r~'~1 77—>0 7T «/ ,, , tr+l 

dt, 

provided the latter limit exists. Thus the theorem is demon­
strated. 

THEOREM 2. The condition 

%{t) = o{r+i) 

is equivalent to the condition 6r(t) —o(t). (See (6).) 
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PROOF. We have 

(i) 6r(t) = Qr(s)s-* \ + T \\(s)sr™ds = o{t) 
X Jo 

at every point for which 

Qr(s) = o(sr+1). 

We have also 

®r(t) = I ~ L Srds = Srdr(s) 
J o sr Jo 

- r I dr^s^ds = tf(/r+1) 
«^ 0 

at every point for which 0r(s) =ö(s). Hence the theorem is 
proved. 

5. Case r = 0. We note that if r = 0, it can be stated that the 
conjugate Fourier series is summable (0, ]3>1) almost every­
where to g(x) of (12). 

This follows since for j8>l,Xifj8(w, /), for fixed n, is of bounded 
variation over (0, oo) and tends to zero as t—»°°, and since for 
a = l, /3>0, r = 0, Lemma 3 is satisfied. Hence, employing as 
before Young's theorem, we find that Lemma 4 is valid for r = 0. 
Moreover, in this case the calculations of Theorem 1 hold and 
its conditions are satisfied almost everywhere.* 

BROWN UNIVERSITY 

* That g(x) exists almost everywhere was proved by A. Plessner, Zur 
Theorie der konjugierten trigonometrischen Reihen, Mitteilungen des Mathe-
matischen Seminars der Universitât Giessen, Heft 10 (1923). 


