
1934-1 SUMMATION OF FOURIER SERIES 69 

ON T H E SUMMATION OF FOURIER SERIES 

BY R. E. A. C. PALEY, W. C. RANDELS, AND M. F . ROSSKOPF 

1. Introduction. Suppose that we have a series 

(1) «i + u2 + us + • . • 

and an infinite matrix {rjn,m}, (0^n<<x>, l ^ m < o o ) . We say 
that the series is summable by the method {rj}, if the sum 

00 

(2) 2J 

tends to a limit as m tends to infinity. 
The method {rj} is said to be regular if, whenever (1) is con­

vergent, (2) tends to the same limit. 
Hille and Tamarkin* call a method of summability in­

effective, if it sums the Fourier series of an integrable function 
to the value of the function at every point x where the function 
has a definite value f(x) and where 

*(0 = ƒ(* + t)+ f(x - t ) - 2f(x) = o(l), 

as /—>0. They call a method L-effective if it sums the Fourier 
series of an integrable function to the value of the function at 
every point of the Lebesgue set of the function ; that is, at every 
point x where 

ƒ» h 

\<t>{t)\dt = o(h). 
o 

The object of this paper is to construct a method of summa­
tion which is regular and ineffective without being L-effective. f 

2. Outline of the Method. We restrict ourselves to methods of 

* E. Hille and J. D. Tamarkin, On the summability of Fourier series, Trans­
actions of this Society, vol. 34 (1932), pp. 757-783. 

f This problem was proposed to the late R. E. A. C. Paley by Professors 
Hille and Tamarkin. Before his death, Paley had worked on the problem, 
leaving an unfinished and incomplete manuscript. On the basis of his work 
Randels and Rosskopf have proceeded and have been able to solve the problem. 
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summation where y]n,m is of the form rj(n/m)\ so that (2) be­
comes 

00 

(3) 2 ] unri(n/m). 

The function 77 need only be defined for rational values of the 
argument, but it is simpler to suppose that it is defined for all 
values of x from zero to infinity. We shall suppose that (a) rj(x) 
is of bounded variation over (0, 00), and that 77 (0) = 77 ( + 0) == 1. 
I t can easily be shown that the conditions (a) imply the regular­
ity of the method of summation {rj}. 

Suppose that (bi) rj(x) —»0 as x—»oo. Then the cosine 
Fourier transform 

/ 2 \ l / 2 / . 0 0 

(4) K(t) = (—J I rj(x) cos tx dx 

must exist, and the integral (4) must converge as an improper 
integral. Suppose further that (b2) 

\K(t)\dt < 00. 
0 

Hille and Tamarkin* have shown that the existence of the in­
tegral (5) is necessary and sufficient in order that a method of 
summation which satisfies (a) and (bi) be F-effective. 

The outline of our method is as follows. We construct a kernel 
K{t) which furnishes a method of summability which is in­
effective. Then we construct a particular function ƒ(x), ƒ(0) =0 , 
the point x = 0 belonging to the Lebesgue set of ƒ(x), such that 
the method {rj} does not sum the Fourier series of ƒ (x) to zero 
at x = 0. 

3. Construction of the Kernel. The kernel which we shall use is 
defined by 

K(t) = Z Kn(t), 

* In an unpublished paper presented to the Society; see E. Hille and J. D. 
Tamarkin, On the summability of Fourier series, IV, this Bulletin, vol. 39, Ab­
stract 181, May (1933). 
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where 

Kn{t) = 
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H {t - 2n + n1'2), 2n - n1'2 < t < 2n, 
tnzi% - ~ 

(t - 2n - n1'2), 2n g / S 2n + ^1/2, 
/^3 /1 

1 0, elsewhere, 

for ?z = 1, 2, • • • . Then it can easily be proved that 

K(t) c L, K*(t) ~ tK(t) c L2, 

and that K(t) is of bounded variation over (0, °°). We define 
A by 

7 ) J. *<»*) • 

Let us define rj(x) as 

/ 2 \ l / 2 ^ o o 

97(a) = Al — j I #(*) costxdt) 

then 77(0) = 1 . Now we consider the Fourier series of an even, 
integrable, periodic function ƒ (V), 

a0 

2 
ƒ(#) ^ —̂  + Z ancosnx; 

then if we replace x by t/m, multiply the Fourier series of ƒ (t/m) 
by A (2/TT)112 K(t), and integrate from zero to infinity, we obtain 

A 

(6) 

/ 2 \ 1 / 2 f °° flo/ 2 \ 1 / 2 f « 

(-) J *(,>/(„„)„ . A T ( - ) J§ 

+ ^(—) f JS:(O( Z^ncos —n* 
\ 7T / J 0 \ n=l ^ / 

#(/)<« 

#0 
+ Z anr)(n/m). 
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This step is legitimate since K(t) is of bounded variation over 
(0, oo).f 

By Plancherel's theorem for Fourier integrals, since K*(t) 
cZ 2 , we have 

0V. 77O*(» ~A\ — J I K*(t) sinxtdt c L2 

over (0, GO). Furthermore if we denote by rjn*(x) the Fourier 
transform of Kn*(x), we can write 

oo oo /% 2 ™ + n l / 2 

rj*(x) = J2 Vn*(x) = i 2 I Kn*(t) sin xt it 
n - l n - 1 ^ 2 n - n l / 2 

* 2 sin 2nx(l — cos^1/2x) 
(7) = A Z 

2^3/2 X'TZ' 

It is easily seen that rj*(x) exists everywhere; hence rjo*(x) 
= rj*(x) almost everywhere. Now clearly rj*(x) is integrable over 
(a, cc), a > 0 , and rjo*(x) is integrable over the interval (0, a) ; 
hence ri*(x) c L over the interval (0, oo ). We write 

ƒ> x r* x / oo \ 

r)*(u)du = lim I < Z T)*(u)>du. 
The sum (7) is dominated by 

00 "J 

AT, 

which belongs to L over (§, #) ; hence we may integrate (8) 
termwise; this gives 

ƒ» x °o r* x /» oo 

y)*(u)du = lim 2Z ^ I ^ I K*{t) smut dt. 
0 ô->0 n==l ^ 5 ^ 0 

Since Kn*(t) vanishes except on a finite interval, we may inter­
change the order of integration and obtain 

t See E. V. Hobson, The Theory of Functions of a Real Variable and the The­
ory of Fourier's Series, 2d edition, 1926, vol. I I , p. 583. Also G. H. Hardy, 
Notes on some points in the integral calculus, LV, Messenger of Mathematics, 
vol. 51 (1922), pp. 186-192. 
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ƒ• X OO /» 00 

ri*(u)du = lim £ A I K*(t) 
0 5-»0 n = i «/ o 

cos 8t — cos xt 
dt 

(9) 

oo / » oo 

= lim ^ ^ 4 I uTw(/)(cos ô/ — cos xt)dt 
5-*0 w = 1 J o 

ƒ
» 00 

2T(/)(cos 6/ — cos xt)dt 
- - 0 

ƒ
» oo 

K(t)dt - ri(x) 
o 0, 

since K(t) is integrable. Consequently the right-hand member 
of (9), as an indefinite integral of an integrable function, is of 
bounded variation; hence rj(x) must be of bounded variation. 
Furthermore, rj(x)—>0 as x-^oo , since it is the Fourier transform 
of an absolutely integrable function. 

Therefore the method of summability defined by rj(x) is 
regular and ineffective. 

4. Construction of the Function. However, this method is not 
L-effective. For consider the even periodic function 

f(x) = 

4_— n 4.— n 
2n 2~n < X ^ 2~n ~\ 

2 log 0 + 1 ) 2 log 0 + 1 ) ' 
{ 0, elsewhere in (0, 2ir), 

so that/(O) = 0 . 
Let us take for consideration the point x = 0. This point be­

longs to the Lebesgue set of f(x) since 

ƒ• t / 00 2~n \ 

f(x)dx = 0 ( X) ) 
0 \ n=[—log2

f] —1 

log O + 1)/ 

\ l o g ( [ - l o g 2 / ] ) / 

= Ol % J = o(t), 
\l0g ( - l0g2 t)) 

as /—K). At this point x = 0, then, the limit of (6) would have to 
be zero if the method were L-effective. 

Consider the integral (6), 
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/ 2 \1/2 r°° / 2 \1/2 rm 

M-) I K{t)f{t/m)dt > A( - J I K(t)f(t/m)dL 

Replace w b y 2W ; t hen our function ƒ(V) becomes 

f(t/2m) = 

O m/1 — n. O m 4 ~ n 

2n? 2»»-n <g l <̂  2 m ~ n + 
21og(» + -l) 21og(» + 1)' 

[0, elsewhere in (0, 2w), (n = 1, 2, 3, • • • ) . 

Hence 

( 2 \ 1/2 / • 2»» / 2 \ 1/2 [w»/2] /» 

- J JT(0/(//2»)*>4 —) E K(t)f(t/2«)dt, 
where 

ƒ„ = ( 2" ; 2" + ) • 
\ 2 log (m — n + 1) 2 log (m — n + 1) / 

B u t over Jn(n^m/2)y K(t) > ( l / 4 ) ( 2 ~ n / n ) f therefore we have 

/ 2 \ 1/2 [m/2] •» 

4") E K(t)f(t/2™)dt 
\ 7T / n = i ^ J n 

/ O \ 1/2 1 [m/2 

(-) 7 Z 

\ 7T / 4 n==1 

2\ l /2 J [m/2] 2~n 2m4n~ 
>A ' 

4 n==i ^ log (m — n + 1) 

2\ l /2 1 [m/2] J / 2X1/2 1 [w/2] 

= ̂ 4(1) 7 £ 
\ 7T / 4 WsBl 

4 n===i ^ log (m — n + 1) 

2 \ 1/2 l [m/2] 1 / 2 \ 1/2 1 

- ) £ — ^ ( — ) — 
7T / 4 log m n==i n \ 7T / 4 

as m—>QO . 

Hence the me thod {77} is no t L-effective. 
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