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ON T H E USE OF CESÀRO MEANS IN D E T E R M I N I N G 
CRITERIA FOR FOURIER CONSTANTS* 

BY C. N. MOORE 

1. Introduction. In the portion of Professor Fejér's address 
dealing with Fourier series, the positiveness of certain linear op­
erations played a central role. These linear operations were 
those that arise in forming for a series the partial Cesàro means 
öf various integral orders. 

The positiveness of the linear functional operation in the case 
of a wide class of Fourier series resulted from the positiveness in 
the case of certain very simple trigonometric series. One such 
series is the series 

1 
(1) - + cos 0 + cos 20 + cos 30 + • • • + cos nd + • • • , 

whose behavior is of fundamental importance in studying the 
convergence or summability of the general Fourier series. For 
the series (1) the partial Cesàro mean of the first order takes the 
form 

1 sin2 00/2) 
(2) ^—— ; (0 ^ 2mw)f 

In sin2 (0/2) 
and the value n/2 for the excepted values of 0, thus being obvi­
ously non-negative for all values of 0. 

For many questions involving Fourier series further light is 
shed on the behavior of the series by considering the Cesàro 
means of non-integral order introduced by Knopp, M. Riesz, 
and Chapman. These means may be defined as follows. We set 

(3) A0 = 1, An = , (n = 1, 2, • • • ), 
n\ 

so that 
/A v-(*+l) A Ah) / I I ^ - N 

* Presented to the Society and Section A of the American Association for 
the Advancement of Science, by invitation, June 21, 1933, on the occasion of 
an address by Professor L. Fejér. 
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the A 's thus being the coefficients in a certain binomial expan­
sion. For any series ^uny the nth Cesàro mean of order k is de­
fined as 

(4) crn = = , 
n n 

and is readily seen to be a weighted mean of the partial sums 
So, $i, ^2, • • • ,sn, - • • of the corresponding series. These defini­
tions may be used for any value of k not equal to a negative 
integer and include the positive, integral means as special cases. 
We consider them here for real values of k è 0. 

If we apply the linear functional operation defined by (4) to 
the partial sums of the series (1) for values of k in the interval 
(0 <k < 1), we can no longer assert that the resulting expression 
is everywhere non-negative,* as in the case fe = l. However, if 
we represent this expression by <rn

(k) (0), we find that it has the 
important property, in common with the expression (2), that 

(5) (* \*n\e)\de 
J 0 

remains bounded for all n. We may speak of this property as 
that of being bounded in the mean for the interval (0,7r). In view 
of the evenness and periodicity of the expression <rn

(fc){0), it 
follows readily that it is bounded in the mean for any finite in­
terval. 

The ordinary partial sums of the series (1) do not have the 
property of being bounded in the mean for the interval (0, 7r), 
since the set of constants 

(6) Cn = I 
J 0 

I sin (n + | ) / 

I sin \t 
dt, 

obtained by integrating the absolute value of the partial sums 
of the series over the interval (0,7r), become infinite with n ap­
proximately as the logarithm of n. This property of the con­
stants (6) was demonstrated in 1910 by Fejer,f who named the 

* See Gronwall, On the Cesàro sums of Fourier's and Laplace's series} Annals 
of Mathematics, (2), vol. 32 (1931), pp. 53-59. See in particular §2. 

t Fejér, Lébesguesche Konstanten una divergente Fourierreihenf Journal fur 
Mathematik, vol. 138 (1910), pp. 22-53. 
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set of constants obtained by multiplying (6) by 2/7T, Lebesgue 
constants. The fact that the set of Lebesgue constants is not 
bounded is inherently connected with the fact that the Fourier 
development of certain continuous functions diverges. 

The boundedness in the mean of the an
ik) (0) for an interval 

including the origin is a determining factor in the efficacy of 
summation (Cè), when applied to the Fourier series of an L-in-
tegrable function.* I t may also be utilized to derive certain 
criteria for deciding if a given set of constants are the Fourier 
constants of an L-integrable function, as will be shown in the 
ensuing discussion. 

2. Criteria for Fourier Constants. The criteria in question in­
volve differences of integral or non-integral order formed from 
an infinite set of constants. We define these as follows, for any 
set of constants #o, du az, • • • , an, • • • : 

(* + l)k 
(7) A^On = an - (* + l)an+1 + — — — a n + 2 - • • • . 

For a non-integral value of k these differences are the limit as 
p—><x>, provided this limit exists, of the expressions 

(8) Ap an = an - (k + l)an+1 + • • • 

(k + l)k • • • 0 - p + n + 2) 

1 • 2 • • • (p — n) 

Ap ap = ap. 

If for a series Swn, 5n
(Aj) is defined as in (4), we have the identity 

(9) ^nnan = J2$n àp an 
n=0 n=0 

by means of a transformation analogous to the well known Abel 
transformation of a corresponding summation, where the par­
tial sums of the u's and the first differences of the a's are used. 

* See the discussion of summability in the following papers: Chapman, On 
non-integral orders of summability of series and integrals, Proceedings of the 
London Mathematical Society, vol. 9 (1911), pp. 369-409, in particular §20; 
Gronwall, On the summability of Fourier's series, this Bulletin, vol. 20 (1913-14), 
pp. 139-146. 
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For any series^Un for which SnW remains bounded, we may, if 
the an's satisfy the conditions* 

oo 

(10) lim an = 0, X > * | Ak+1an | < » , (* > 0), 
» - > » n = 0 

allow p to become infinite in the above identity, since the ex­
pression on the right hand side approaches a limit by virtue of 
the restrictions imposed.f We thus obtain the result 

/ i i \ v n^o(k)Ak+1 ^v(kKk+l v^ 
(11) l i m 2L*S» AP an = 2 - ^ « A an = 2^Un^n> 

P-+<*> n=0 n = 0 w=0 

We are now ready to state our criteria in the form of a the­
orem. 

THEOREM. If the set of constants a0, #i, a2, • • • , ani • • • satisfy 
the conditions (10), then the series 

1 
(12) -a0 + ai cos 6 + a2 cos 20 + • • • + an cos nd + • • • 

w7/ converge in the open interval ( O < 0 ^ x ) , awd wi// represent 
there an L-integrable function whose Fourier cosine development 
is given by (12). 

This theorem follows readily from the preceding discussion 
and the fact that for the trigonometric series (1) the expression 
crn

ik) (0) is bounded in the mean in the interval (0, x). Because of 
the conditions on the a's and the boundedness of Sn

ik) (0) for the 
series (1) in the interval O<S^0^7r , we may infer the con­
vergence of the series (12) in that interval to a function 

I 00 
1 (£) k-\-l 

(13) f($) = - a0 + ax cos 0 + a2 cos 20 + • • • = X X (0)A an. 
2 n=0 

The series on the right hand side of (13) converges absolutely 
and uniformly in the interval O < S ^ 0 ^ 7 r and can therefore be 
integrated term by term in that interval. Thus we have 

ƒ *" °° / C T IS W(0) I \ A W 

\f(e)\des Z f \^^\de)^-nk\^an\. 
* The existence of the differences in the second condition follows from the 

first condition. 
t See Chapman, loc. cit., §15. 
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As 5 approaches zero, the right hand side of (14) approaches a 
definite limit in view of conditions (10) and the boundedness in 
the mean of an

(k) (0) in the interval (0, 7r). Thus the left hand 
side does also, and the existence of the resulting integral shows 
that the function ƒ(0) is an L-integrable function whose Fourier 
cosine development is given by (12). 

3. Relationship to Criteria Previously Found. The second con­
dition in (10) involves a parameter &, and thus we have different 
criteria for different positive values of k. If we set k = 1 in (10), 
the resulting conditions constitute a criterion due to Kolmo-
goroff.* It can be shown that the scope of our theorem increases 
as k diminishes. Thus any of our criteria for a positive value of 
k<l includes KolmogorofFs theorem. Furthermore, there is no 
best criterion of this type, and we have a sliding scale of tests 
analogous to the logarithmic scale in testing the convergence of 
a series of positive terms. 

For the proof of these facts we need to show that if the dif­
ferences Ak+1an satisfy the second condition of (10) for a positive 
value r of k, they will satisfy it for any value of k in the interval 
0<k<r. If we set p = r — k, it is readily seen that we have the 
formal identity 

(15) Ah+Hn = A-P(A^On). 

The validity of the infinite process involved in this identity may 
be established by expressing the right hand side in the form of 
a double series as follows : 

(r + \)r 
an - (r + l)0n+i H — — a n + 2 - • • • 

(16) 
+ 0 + pan+1 - P(r + l)an+2 + 

P + 

1-2 

p(p + 1) 
+ 0 + 0 + - ^ - ~an+2 

+ 
If we form the sum, spq, of the pa terms taken from the first p 
rows and the first a columns of this series, the convergence of 

* Kolmogoroff, Sur Vordre de grandeur des coefficients de la série de Fourier-
Lebesgue, Bulletin de l'Académie Polonaise, (A), 1923, pp. 83-86. 
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spq as p and q become infinite in such a manner that q ^ p fol­
lows from the existence of the left hand side of (15). For the 
case q>p, the additional terms included are seen to be negligible 
from the boundedness of the a's and the order of magnitude of 
the binomial coefficients involved. Thus (16) converges as a 
double series. Furthermore, the individual columns converge 
since their terms are all zero from a certain point on, and the 
individual rows converge as a result of the existence of the dif­
ferences Ar+1an- From a theorem due to Pringsheim* it now fol­
lows that the double series converges when summed by columns 
or rows, and that the sum by columns is equal to the sum by 
rows, which establishes the validity of (15). 

We are now ready toshow that the convergence of ̂ nr \ Ar+lan \ 
implies the convergence of ^w*] Afc+1an|, whenever f 0^k<r. 
From (15), taking account of the fact that the right-hand side 
is the sum by rows of (16), we have the inequality 

oo 

(17) | A*+*an | < | Ar^an | + ^KjT1 | A ^ V p I, 
p - i 

(K a positive constant). 
Hence, if we set 

(18) | AH-i^l = €»/»', 

we obtain readily the further inequality 

00 00 

(19) J>* | Ak+1a» | < 2>* | A'+V | 
n«0 n=0 

n=0 \ p-1 (» + PV / 

The single series in the first term of the right hand side of (19) 
is obviously convergent, k being less than r. Since, in view of 
our hypothesis, the ew defined by (18) is the general term of a 
convergent series, it will follow that the double series in the 
second term on the right hand side of (19) is convergent if, when 
we sum the expression 

(20) nkpe~l/(n+py 

* Bromwich, Theory of Infinite Series, 1st or 2d edition, §30. 
t For our immediate purpose we do not need to include the case k = 0 , but 

the more general result follows from the same argument. 
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over all values of n and p for which n+p^m, the result is 
bounded for all m. This summation can be written in the form 

(21) - 5>-i(m - * ) * - : £ ( - ) ( 1 - - ) - • 
m r

 p = =i p==1 \m/ \ ml m 

For large values of m the summation on the right hand side of 
(21) approximates to the value of the integral 

/
XP-^I - x)kdx, 

o 

and is therefore bounded for all m, as we wished to show. 
We have proved that the convergence of^w r |A r + 1 a w | implies 

the convergence oî^nk\à.k+1an\, whenever f>jfe^0. That the 
converse is not true may be readily seen by considering the a's 
defined by 

1 
(22) a0 = 0, lim an = 0; a 2 n- i — #2n = 0, a2n — a,2n+\ = —> 

»-»oo n 2 

(w = l, 2, • • • ). This set of a's satisfies the second condition in 
(10) for any k such that 0 ^ & < 1 , but not for fe = l. 

The question naturally arises as to why we can not take the k 
in (10) equal to zero and thus get a more inclusive theorem than 
that obtained for values of k>0. I t is readily seen, however, 
that if we allow the k to take on the value zero, the argument of 
our theorem is no longer valid, since the ordinary partial sums 
of the series (1) are not bounded in the mean for the interval 
(0, 7r) but become logarithmically infinite in the mean with n, 
as pointed out before. A modification of (10) to meet this diffi­
culty gives us a criterion due to Szidon,* 

00 

(23) lim an = 0, J2 l og n I Aan \ < °° • 
n-*cc n=si 

This latter criterion is obviously closely related to the criteria 
of the present paper, but it does not include them nor is it in­
cluded by them. 

T H E UNIVERSITY OF CINCINNATI 

* Szidon, Reihentheoretische Satze und ihre Anwendungen in der Theorie der 
Fourierschen Reihen, Mathematische Zeitschrift, vol. 10 (1921), pp. 121-127. 


