
SPACES A D M I T T I N G COMPLETE ABSOLUTE 
PARALLELISM* 

BY L. P. EISENHART 

At the Colloquium of this Society held at Ithaca in Septem­
ber, 1925, I set forth, under the title The New Differential 
Geometry, certain developments which had taken place during 
the preceding ten years, growing out of the concept of in­
finitesimal parallelism for Riemannian spaces proposed by Levi-
Civita. When these lectures were published in book form [l]f 
in 1927, the book included also material which had been de­
veloped in the interim. Since that time there have been many 
further developments. Instead of trying to make a full survey of 
these, I have decided to limit my paper to the theory of linearly 
connected manifolds admitting a complete absolute parallelism. 

Levi-Civita [2] introduced the concept of parallelism in a 
Riemannian space as a means of giving an invariantive inter­
pretation to the curvature of the space. Since a Riemannian 
space of n dimensions, Vn, may be thought of as a sub-space of 
a euclidean space of suitable dimensions, Levi-Civita applied 
the concept of parallelism of the euclidean space to vectors 
tangential to the sub-space. In fact, vectors a and a' at two 
nearby points P and P' were defined to be parallel, if the angles 
between a and a tangent vector ƒ at P and a' and ƒ are equal 
from the euclidean point of view for every tangential vector ƒ. 
Analytically this leads to the result that, if in terms of general 
coordinates xi in Vn the coordinates of P and Pf are x* and 
xl-\-dx\ then £* and £*+d£* are the components of parallel direc­
tions at P and P ' , provided 

(1) d? + | !^S>'dx* = 0, (i, j , k = 1, • • • , n), 

where {)k\ are the Christoffel symbols of the second kind 

* An address delivered at Atlantic City, December 28, 1932, as the re­
tiring presidential address, before the American Mathematical Society. 

f Such references are to the items in the bibliography at the end of this 
article. 

217 



218 L. P. EISENHART [April, 

formed with respect to the fundamental tensor gij of Fw.* Al­
though the metrical properties of the enveloping euclidean space 
were used in the geometrical definition of parallelism, the 
analytical result involves only the quantities of Vn, that is, it is 
intrinsic, a result which Levi-Civita considered necessary for an 
appropriate definition. 

Let P and Q be two nearby points of a geodesic C. Through 
them geodesies are drawn in parallel directions, thus making 
the same angle \[/ with C, and on the geodesies equal lengths 
are laid off from P and Q with end points P' and Q', so that we 
have a parallelogrammoide PQP'Q'. If P'Q' and PQ denote the 
lengths of these respective sides of PQP'Q'', then as Levi-Civita 
has shown [2, p. 191 ] the Riemannian curvature at P for the 
orientation determined by PQ and PP' is equal to the ratio of 
(P'Q')2- {PQY and the square of the area of PQP'Q', 

Recognizing that parallelism is an affine property and thus 
is not limited to spaces with an assigned metric, Weyl [3] gen­
eralized equations (1) in the form 

(2) d? + T)k¥dxk = 0, 

where the T's are functions of the x's. Consider three nearby 
points P , Pi , and P 2 of coordinates x\ x^+dix*, and xi-\-d2x

i. 
The coordinates of the end point of the vector at P 2 parallel to 
dix1 at P are 

x* + d2x
{ + dix1 + d2dixi + Ti.kd1x

J'd2x
k. 

Interchanging the subscripts 1 and 2, we have the coordinates 
of the end point of the vector at Pi parallel to d2x

l at P . These 
points coincide when and only when 

(3) Tjk = r*;,-, 

as in the case of the Christoffel symbols. Weyl imposed this con­
dition in his definition of infinitesimal parallelism, and of an 
affinely connected manifold. The quantities T}k are called the 
coefficients of the affine connection. 

When the coordinates xi of the space undergo a non-singular 

* Throughout this paper we use the convention that a term containing a 
repeated index indicates the sum of such terms as the index takes on all possible 
values. 
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transformation into coordinates x'\ and we denote by Yjl
k the 

coefficients of the connection in the x"s, we have 

d2xl i dx} dxk
 n dxl 

(4) + r = T 

dx'adx'P dx'<* dx'f dx'v 

From these equations it follows that the coordinates xfi can be 
chosen in many ways so that at a given point T ^ = 0, and con­
sequently it follows from (2) that parallel vectors at P and 
nearby points have the same components. Consequently, in the 
neighborhood of a point the situation is the same as that which 
obtains throughout the whole of euclidean space in terms of 
cartesian coordinates. Moreover, this property is true only in 
case equations (3) are satisfied, and thus it may be taken as a 
characteristic property of Weyl's affine connection. 

Veblen and I, [4] and [ l ] , developed this theory by taking 
as basis the paths, that is, the integral curves, of the system of 
equations 

d2xl i dx3' dxk 

+ r,*— — = 0. 
ds2 ds ds 

These curves are the straightest lines for the definition (2) of 
parallelism, in that the tangents to any path are parallel with 
respect to the path. From this basis one develops naturally a 
projective geometry as well as an affine one. 

A necessary and sufficient condition that there exists a co­
ordinate system for which r£$ = 0 at every point, in which case 
we have a euclidean space and the coordinates are cartesian, is 
that 

(5) Biik = 0, 

where 
h h 

. h dYik STij i h i h 
(6) Bijk = ; — h TikTij — YijTiu. 

dx3 dxk 

If in the equations 

d^ i 3-dxk 

(7) - j - + r ,rf '—= 0 
dt dt 

we put 
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(8) X* = 0*(O, 

a solution of the system (7) is determined by the initial values 
of the £'s. Thus at each point of the curve (8) we have a vector 
and all of these vectors are said to be parallel. Consequently, we 
have distant parallelism of vectors, but in general, as follows 
from (7), the vector at a point Q parallel to a vector at a point 
P depends upon the curve joining P and Q. Thus the parallelism 
is not absolute as in the case of euclidean space. Levi-Civita 
introduced this idea, using (7) in which the T's are the Christof-
fel symbols, and Weyl generalized it to affine connections. 

If parallelism is to be independent of the curve, £* must satisfy 
the equations 

(9) T l + r ^ = 0> (*>•/> * = V " , » ) . 
dxk 

Each set of solutions of these equations defines a field of abso­
lutely parallel vectors. In order that there may be n independent 
fields, it is necessary that the conditions of integrability of the 
above equations, that is, £*£#£ = 0, be satisfied identically. 
Consequently, equations (5) must hold and the space be eu­
clidean. 

We have remarked that Weyl imposed the condition that the 
functions Y)k be symmetric in j and k in order to insure that 
in the neighborhood of a point parallelism be euclidean. If this 
restriction is not made, we say that the affine connection is 
asymmetric and take as the coefficients L}k} denoting by Y)k and 
tyk the symmetric and asymmetric parts, so that 

i i i 

(10) Ljk = Y jk + Œj&. 

In place of (4) we have 
d2xl i dx3' dxk ,y dxl 

= L 
/Y 

(11) + Lih 

dx'°dx'P dx'a dx'* dx'y 

from which follow (4) and 

i dxJ' dxk dx" iy 
(12) tijk — 7 = fia|3, 

dx'« dx'* dx* 

so that the Q's are components of a tensor. Any set of functions 
Ljk and L% satisfying (11) are said to determine an asymmetric 
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affine connection. If in (9) we replace Y)k by L}kj we have the 
equations of condition that a field of vectors be absolutely 
parallel and their condition of integrability is £*Z^ = 0, where 
L^jk is the same expression in the Z/s as B\^ (6) is in the T's. 
Consequently a necessary and sufficient condition that there be 
n independent fields of parallel vectors is that 

h 
Lijk — 0; 

in this case we say that the space admits complete absolute 
parallelism, and that it is of zero curvature. Since Oĵ  are com­
ponents of a tensor, if they are zero in one coordinate system at 
a point they are zero in every system. Hence when, and only 
when, the connection is symmetric is it possible for all the 
coefficients of the connection to be zero at a point. Conse­
quently spaces with asymmetric connections of zero curvature 
are not euclidean, but pseudo-euclidean in that they admit 
complete absolute parallelism. 

If in the case of a space of zero curvature we denote by Xa 

the components of n independent fields of parallel vectors, i 
indicating the component and a the vector, we have 

i 

(13) —~ + \2
aLjk = 0. 

dxk 

Since the matrix ||X«|| is of rank n, quantities Xf are defined 
uniquely by 

(14) X« \j = ôj, X«Xi = <5a, 

where a 8 is equal to one or zero, according as its indices are 
the same or different. By means of these functions we have 
from (13) 

i a 
. N i ad\a i d\j 
(15) Ljk = - \j —- = Xa —— • 

dxk dx/c 

Conversely, if we have n independent vectors X« and define 
Ljk by (15) with the aid of X", the quantities so determined in 
any two coordinate systems satisfy (11), and thus determine an 
affine connection with respect to which the vectors X« are ab­
solutely parallel. In 1922-1923 Weitzenböck [5, p. 319] showed 
that the functions (15) satisfy (11) and used them as a basis for 
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co variant differentiation, but made no reference to the paral­
lelism which they define. However, in 1923 Vitalli [ó] used them 
to define parallelism, and pointed out that each field of vectors 
is absolutely parallel. 

In 1917 Hessenberg [7] developed a differential geometry 
based upon an ennuple of independent vectors and developed a 
type of differentiation based thereon. Two years later König [8] 
analyzed these concepts in the light of Weyl's contribution and 
called attention to the fact that the affine connection defined 
thereby is not symmetric. So far as I know this is the first refer­
ence to the use of an asymmetric connection, although evi­
dently it was considered by Weyl and not used for the reasons 
previously mentioned. In 1922-1923 Cartan investigated the 
geometry of a space with an affine connection based on an en­
nuple of vectors and developed the concept of equipollance in­
volving the idea of parallelism. He showed that the vanishing 
of the curvature tensor is the condition for complete absolute 
parallelism [9, p. 368] and thus he seems to have been the first 
writer to deal explicitly with this concept. Schouten [lO] made 
an extensive study of types of linear connection. 

If we put 

(16) gu = X>-, g" = XV, 

we have 

The tensor gij thus defined may be taken as the basis for a Rie­
mannian metric in the affinely connected manifold, in which 
case the vectors X« form an orthogonal ennuple. The Christoffel 
symbols formed with respect to gij are in the following relation 
to the coefficients of the affine connection : 

(17) {^} =r;,+ r H ^ < + g*<). 

Vitalli [6] proposed this introduction of a metric. 
What I have presented thus far was a matter of record, when 

in 1928 Einstein [11] proposed a unified theory of gravitation 
and electricity based upon the concept of a Riemannian space 
admitting distant parallelism. He was unaware of the existence 
of the requisite mathematical knowledge and developed it 
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anew. He said "The new unitary field theory is based on the 
following mathematical discovery: There are continua with a 
Riemannian metric and distant parallelism which neverthe­
less are not euclidean." Later he gave up hope of founding a 
satisfactory theory on such a basis and recently turned to what 
is essentially a generalized projective geometry. The elements of 
such a geometry were presented in my colloquium lectures, and 
I might have chosen this subject for my address. But this 
theory and its application to relativity are presented by Veb-
len in his forth-coming book, Projektive Relativitatstheorie, one 
of Springer's "Ergebnisse der Mathematik." 

Bianchi, [12, p. 517], showed that a simply transitive group 
is the group of motions of determinate Riemannian manifolds. 
In 1925 I [13] gave a new proof of this result, making use of the 
linear connection whose coefficients are defined by 

i a 

(18) Lik = - & r = & 7> 
dx3 dx3 

where & are the vectors of the transitive group and i£ are given 
by equations of the form (14), and showed that the connection 
of coefficients L)k has zero curvature. Consequently the equa­
tions 

(19) = guLjk + gjiLik 
dxk 

are completely integrable, and it can be shown that any solution 
is the fundamental tensor of a Riemannian space admitting the 
group as a group of motions. Since the connection is of zero 
curvature, there are n independent fields of absolutely parallel 
vectors, say X«, in terms of which L)k are expressed in the form 
(15). The quantities gij given by (16) satisfy (19), and each 
solution of (19) is expressible in terms of suitable linear com­
binations of the A's with constant coefficients. We remark 
furthermore that the X's are the vectors of the simply transitive 
group reciprocal to the given group. They may be used as in (18) 
to determine a second affine connection of zero curvature, whose 
coefficients Ljk satisfy the condition Ljk=L\j. 

When an affine connection has zero curvature, an ennuple of 
absolutely parallel vectors are the vectors of a simply transitive 
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group, when and only when the first covariant derivatives of 
£ljk with respect to the L's are zero. In this case Y]k and ü)k 

satisfy the conditions 

h i h 

In accordance with the theory of Lie, if 

Xfi = fi(Xl} . . . 9 xn. al9 . . . ^ a r ) 

are the equations of an r-parameter continuous group, then 

dxn ,- a / i = 1, • • • , n:\ 
— = U*?)Ma), ( ' ), 
a a1 \a} t = 1, • • • , r / 

where £« are the vectors of the group, and under a non-singular 
transformation of the a's the ^4's are related as covariant vec­
tors. They may be interpreted as vectors in the group-space S 
of coordinates a1. By means of equations similar to (14) we ob­
tain an ennuple of contravariant vectors Al

a, and as is well 
known they are the vectors of a simply transitive group. Con­
sequently they, and the vectors of the reciprocal group, deter­
mine two affine connections of zero curvature for the group 
space. This theory has been studied extensively by Cartan 
[14, 15] and Schouten [14, 16] as setting forth the geometry of 
the two-parameter groups of a given group. In particular the 
trajectories of a one-parameter sub-group of either parameter 
group are parallel paths of S. 

Einstein and Mayer [l7] in developing the unified theory on 
the basis of absolute parallelism considered the rotation group 
of motions of the manifold in order to determine a spherically-
symmetric space-time. Robertson [18] considered the general 
question of motions of a linearly connected manifold of zero 
curvature. His definition is equivalent to saying that if equa­
tions (11), in which Ljl are the same functions of the xns as the 
corresponding L)k are of the x's, admit a solution involving one 
or more parameters, these solutions define a motion. When a 
metric is assigned, as in (16), the equations of motion imply the 
Killing equations. In this case a group of maximum order, 
namely n(n + l)/2, is realized only in case 12ĵ  = 0 and the space 
is euclidean, except when n = 1 or 3. In the latter case the space 
is of constant curvature. If the curvature is positive and the 
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metric is positive definite, the two parallelisms are those dis­
covered long ago by Clifford. Cartan [19, p. 704] had shown pre­
viously that the two types of parallelism of Clifford could be 
identified with parallelism in a linearly connected manifold of 
zero curvature. 

The differential invariants of a linearly connected manifold 
of zero curvature have been studied by Griss [20 ], Weitzen-
bock [2 l ] , and Bortolotti [22], but we shall not set forth their 
results. 

In presenting this review of the development of the concept 
of complete absolute parallelism I may quite unintentionally 
have omitted references to writers which should be included. 
Furthermore I have not attempted to give a complete bibliog­
raphy of the subject; the reader will find further references in 
the papers listed, and in particular in [21 ], [23], and [24]. 
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