RESULTS AND PROBLEMS ABOUT *n*-WEBS OF CURVES IN A PLANE

BY WILHELM BLASCHKE

Ιf

$$x^* = u(x, y), \qquad y^* = v(x, y)$$

is a topological mapping of the x, y plane, we call the function u topologically equivalent to x in this plane. Let us assume n such functions $t_i(x, y)$, $(i = 1, 2, \dots, n)$, in the same simply connected domain D. We have there n sheaves of curves $t_i(x, y) = \text{const.}$ We call this figure an n-web if two curves of different sheaves have not more than one point in common. We suppose the functions $u_{ik}(t_i)$ to be continuous and strictly monotonic, so that for all pairs $t_i \neq t_i'$, we have $u_{ik}(t) \neq u_{ik}(t')$.

It seems to be interesting to study *n*-webs satisfying the condition that there are such functions $u_{ik}(t_i)$ satisfying identically in D the relations

(1)
$$\sum_{i=1}^{n} u_{ik}(t_i) = \text{const.}, (k = 1, 2, 3, \dots, m).$$

We call these equations (1) linearly independent, if the identities

(2)
$$\sum_{k=1}^{m} c_k u_{ik}(t_i) = \text{const.}$$

imply for the constants c_k the trivial solution $c_k = 0$, $(k = 1, 2, 3, \dots, m)$. The following theorems hold.

THEOREM 1. A 3-web satisfying one condition (1), (n=3, m=1), is topologically equivalent to the tangents of a curve of class 3 (irreducible or not).

This was essentially found by Graf and Sauer† in 1924. Howe and I‡, in 1932, proved the following theorem.

[†] H. Graf and R. Sauer, Münchener Berichte, 1924; W. Blaschke and G. Howe, Hamburg Abhandlungen, vol. 9 (1932); W. Blaschke, Tôhoku Mathematical Journal, 1933.

[‡] W. Blaschke and G. Howe, Hamburg Abhandlungen, vol. 9 (1932).

THEOREM 2. A straight lined n-web satisfying (at least) one condition (1) is necessarily equivalent to the tangents of a curve of class n $(n \ge 3)$.

Our result contains Theorem 1 as a special case, because a 3-web satisfying the equation

$$u_1 + u_2 + u_3 =$$
const.

is equivalent to a special straight lined 3-web (hexagonal web), as we see if we assume u_1 and u_2 as parallel coordinates.

Howe observed that the following Theorem 3 is equivalent to S. Lie's results about the surfaces, which are *translation surfaces* in different ways.

THEOREM 3. A 4-web satisfying 3 linearly independent relations (n=4, m=3) is equivalent to the tangents of a curve of class 4.

A geometric interpretation of one condition (1) for a 4-web has been given by Bose and myself.† Bol‡ discovered a short time ago the following result.

THEOREM 4. The maximum number m of linearly independent relations (1) for an n-web is

(3)
$$m = \frac{(n-1)(n-2)}{2}.$$

Almost equivalent to a theorem of Reidemeister§ are the following.

THEOREM 5. A 4-web satisfying 3 linearly independent relations (1) with $u_{ii} = 0$ is equivalent to 4 pencils of straight lines, no 3 of the 4 vertices on a straight line.

THEOREM 6. A 4-web satisfying 3 relations (1) with $u_{ii} = 0$, (i = 1, 2, 3), only two of them linearly independent, admits a continuous one-parameter group, the $t_4 = \text{const.}$ being paths.

But between the proofs of these theorems there is an essential difference Only Theorem 1 and the greater part of Theorems 5 and 6 are proved without any further restrictions for the functions t_i , u_{ik} . The proofs already known for Theorems 2–6

[†] W. Blaschke and R. C. Bose, Indian Physico-Mathematical Journal, vol 3 (1932), p. 99.

[‡] G. Bol, this Bulletin, vol. 38 (1932), pp. 855-857.

[§] K. Reidemeister, Mathematische Zeitschrift, vol. 29 (1928).

contain regularity restrictions. Therefore the first problem to be solved is the following one.

PROBLEM A. Do the Theorems 2-5 remain valid without further regularity restrictions?

Another question unsolved as far as I know is the following one.

PROBLEM B. To extend our Theorem 3 to n-webs.

These problems seem to be interesting because, for example, they contain a kind of real geometrical interpretation of Abel's theorem on algebraic curves.

Finally a few words about more dimensions. The questions about webs of surfaces

$$S_i(x, y, z) = \text{const.}$$

in a 3-space can partially be reduced to our theorems on curvewebs in a 2-space. But if we consider *sheaves of curves*

$$s_i(x, y, z) = \text{const.}, t_i(x, y, z) = \text{const.}$$

in a 3-space we may ask, for example, the following question.

PROBLEM C. How many essentially different relations

$$u_1(s_1, t_1) + u_2(s_2, t_2) + u_3(s_3, t_3) = \text{const.}$$

can exist for a 3-web of curves

$$s_i, t_i = \text{const.}, \qquad (i = 1, 2, 3),$$

in a 3-space?

This seems to me to be one of the most promising fields of geometric research.

THE UNIVERSITY OF CHICAGO, AND THE UNIVERSITY OF HAMBURG