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A NOTE ON NORMAL DIVISION ALGEBRAS 
OF ORDER SIXTEEN* 

BY A. A. ALBERT 

1. Introduction. I have proved f that every normal division 
algebra of order sixteen over any non-modular field F contains 
a quartic field with G\ group. This important result gave a 
determination of all normal division algebras of order sixteen. I 
have recently proved J the existence of non-cyclic normal division 
algebras, so that the result mentioned above is actually the best 
possible result. However, my proof of 1929 is long and compli­
cated and the above result there obtained is of sufficient im­
portance to make a better proof desirable. It is the purpose of 
this note to provide such a proof. 

2. Results Presupposed.^ We shall require certain well known 
results on normal division algebras D of order sixteen over F. 
Algebra D has rank four, so that every sub-field of D is either 
a quartic field, a quadratic field, or F itself. We also have the 
following theorems. 

THEOREM 1. Every root in D of the minimum equation of a 
quantity x of D is a transform yxy~l of x by y in D. 

THEOREM 2. If <t>(œ) = 0 is the minimum equation of x in D, 
then there exist quantities Xi = Xi, #2, • • • , xrin D such that 

<£(co) = (co — xr) - • • (w — #2)(w — Xi). 

It is obvious that no two adjacent transforms • v^ - j - l , X% 111 the 
above irreducible equation can be equal. 

From the well known Wedderburn theorem on linear associa­
tive algebras with normal simple sub-algebras we have im­
mediately the following result. 

* Presented to the Society, August 31, 1932. 
t Transactions of this Society, vol. 31 (1929), pp. 253-260. 
t See this Bulletin of June 1932 and the Transactions of this Society of 

January 1933 for proof. 
§ See my paper, Annals of Mathematics, vol. 30 (1929), pp. 322-338, for a 

proof of Theorem 1 and a reference to proofs of Theorem 2 and the Wedder­
burn result implying Theorem 3. 



704 A. A. ALBERT [October, 

THEOREM 3. Let D contain a generalized quaternion algebra Q. 
Then D = QXR, where R is also a generalized quaternion algebra. 

3. On Quartic Fields. Let X be a quartic field over F. If 
X = F(x), so that x generates X, then x is called a primitive quan­
tity of X, otherwise imprimitive. Similarly X is primitive if it 
contains no imprimitive quantities not in F and otherwise is 
imprimitive. The group of X is primitive or imprimitive according 
as X is primitive or imprimitive.* In a quartic field X the only 
possible sub-fields except F are those of order two. Hence X is 
imprimitive if and only if it has a quadratic sub-field. 

If x is any primitive quantity of X and the minimum equation 
of xis 0(co) =0 , thenXis known f to be imprimitive if X contains 
an X2 T^X and yet satisfying </>(co) = 0. 

Of particular importance for us are quartic fields X with group 

(1) G4 = (/ , sh s2) s3), si2 = s2
2 = s3

2 = I, ss = sis2 = S2SL 

Obviously the above group is the direct product of two cyclic 
groups of order two. Correspondingly, X is the direct product of 
two quadratic fields. Conversely, every direct product of two 
non-equivalent quadratic fields is a quartic field with group G4. 
We shall prove that every normal division algebra D of order 
sixteen over D contains two quadratic sub-fields F(u), F(v) such 
that uv = vuy while v is not in F{u). I t follows that the sub-field 
F(u, v) of the division algebra D is the direct product of F(u) 
and F(v) and has group G4. 

4. The Existence of a Quadratic Sub-Field of D. We shall first 
prove the following lemma. 

LEMMA. Let x in D have 

(2) 0(w) = a;4 + aco3 + /fo2 + TOO + 8 = 0, (a, • • • , Ô in F), 

as its minimum equation and let Y be a quartic field such that 

(3) <Kco) = B-A 

where 

(4) A s a>2 - /KO + si, J5 = co2 - /2co + s2 

* See Weber's Algebra, vol. 1, p. 505 and p. 525 for the preceding results. 
t See Netto's The Theory of Substitutions, p. 198. 
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have coefficients h, fo, si, S2 in Y. Then one of X = F(x) and Y is 
imprimitive. 

For let W be an extension of Y in which A and B are reduc­
ible. Then A =(œ—i2)((a—ii)9B= (<a—^)(ca—^z)y where ^it • • • , 
£4 are in IF so that the fields X = F(x), F(£i) are equivalent quar-
tic fields. If Si=\ in F, then £2£i=X, ê 2 = X ^ - 1 ^ ^ is in F(£i). 
Hence -F(£i) and F(x) are imprimitive by the argument of §3. 

If S2+Si = \ in F, then, since 2̂̂ 1 = S in F, si is a root of 
co2 — \co+S = 0 and, since S\ is not in F, Y containing si is im-
primitive. Hence let y = S\+S2 be not in F. 

But y = ?4?3+?2?i is well known,* by elementary theory of 
quartic equations, to be a root of the resolvent cubic of </>(co) = 0. 
Hence F(y) cannot have order four. Hence Y is imprimitive. 
Our proof of the lemma is complete. 

Let now x be in D and X — F{x) be a primitive quartic field. 
By Theorem 2 

(5) </>(co) = (co — Xi)(o) — Xs)(o) — #2) (<0 — Xi), Xi = X, 

where x%, #3, #4 are in D. Also 

</>(co) = J5--4, i? = (co — Xi)(o) — xs) = co2 — /2co + s2, 
(6) 

4̂ = (co — #2)(co — Xi) = co2 — /ico + si. 

Using (6) and (2) and comparing coefficients of co3, co2, co° = l, 
respectively, we obtain 

(7) h + h = — a, s2 + Si + hh = j8, 2̂̂ 1 = ô. 

By substituting for s% and fe from the first and third parts of (7) 
in its second part we obtain 

(8) dsr1 + Si = p + ha + t? . 

Suppose that both F(si) and JF(/I) are primitive. Then any 
quantity of each field generates the field and the two fields are 
equal if and only if they have a quantity not in F in common. 
But tx

2+ah+p is not in F and is in F(sx) by (8). Hence F(h) 
= F(si) = F contains all of si, s2, h, h by (7). But X is a primitive 
field by hypothesis. Hence, by the above lemma, Y is imprimi­
tive, a contradiction. 

* See L. E. Dickson, First Course in the Theory of Equations} p. 51. Thus 
the above essential point of our proof is a very elementary result. 
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Hence at least one of F(si), F(h) is imprimitive and contains a 
quadratic sub-field, or one of these fields is a quadratic field, 
or one of them coincides with F. But if either h^x^xi or 
5i = x2xi is in JF, then X contains a root x^xi of the minimum 
equation of xi and is imprimitive, a contradiction. 

Hence if x is in D but not in F, then either F(x) is a quadratic 
field, or F(x) is imprimitive and contains a quadratic field, or 
F(x) is primitive but either F(si) or F(ti) contains a quadratic 
field. We have thus proved the following theorem. 

THEOREM 4. Every normal division algebra of order sixteen over 
F contains a quadratic sub-field. 

The above proof is certainly a great simplification of my 
earlier proof of the same theorem requiring about four printed 
pages. We shall also obtain a simpler proof of the final result, a 
consequence of Theorem 4. 

5. The Desired Determination. Let D be a normal division 
algebra of order sixteen over F. By Theorem 4, D contains a 
quadratic sub-field U=F(u), u2=p in F. But ( — u)2=p so that, 
by Theorem 1, — u^yuy"1, where y is in D. From yu= —uy 
it follows that y2u — uy2. If y2=\ in F, algebra D contains the 
generalized quaternion algebra Q = (l , u, y, uy) over F and, by 
Theorem 3, D = QXR, where R=(l,v,z, vz), zv= — vz, v2 = a in 
F. In this case D contains the quartic field F(u, v) with GA group 
as desired. Let then y2 = v not in JF. If v is a primitive quantity 
of F== F(y), then F is a polynomial in y2. But y2 is commutative 
with u while y is not commutative with u. Hence v is imprimi­
tive, vu — uv, F(v) is a quadratic field. Also u is obviously not in 
F(v) <F(y) so that F(u, v) is a quartic field with group G4. The 
following theorem is thus proved. 

THEOREM 5. Every normal division algebra of order sixteen 
over any non-modular field F contains a quartic sub-field with 
group G4. 
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