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A NOTE ON NORMAL DIVISION ALGEBRAS
OF ORDER SIXTEEN*

BY A. A. ALBERT

1. Introduction. 1 have provedf that every normal division
algebra of order sixteen over any non-modular field F contains
a quartic field with G4 group. This important result gave a
determination of all normal division algebras of order sixteen. 1
have recently proved} the existence of non-cyclic normal division
algebras, so that the result mentioned above is actually the best
possible result. However, my proof of 1929 is long and compli-
cated and the above result there obtained is of sufficient im-
portance to make a better proof desirable. It is the purpose of
this note to provide such a proof.

2. Results Presupposed.§ We shall require certain well known
results on normal division algebras D of order sixteen over F.
Algebra D has rank four, so that every sub-field of D is either
a quartic field, a quadratic field, or F itself. We also have the
following theorems.

TuEOREM 1. Every root in D of the minimum equation of a
quantity x of D is a transform yxy~* of x by y in D.

THEOREM 2. If ¢(w)=0 is the minimum equation of x in D,
then there exist quantities x;=x1, X2, + - + , %, tn D such that

d(w) = (0 — a) -+ (0 — @2)(0 — x1).

It is obvious that no two adjacent transforms x;1, x; in the
above irreducible equation can be equal.

From the well known Wedderburn theorem on linear associa-
tive algebras with normal simple sub-algebras we have im-
mediately the following result.

* Presented to the Society, August 31, 1932.

t Transactions of this Society, vol. 31 (1929), pp. 253-260.

1 See this Bulletin of June 1932 and the Transactions of this Society of
January 1933 for proof.

§ See my paper, Annals of Mathematics, vol. 30 (1929), pp. 322-338, for a
proof of Theorem 1 and a reference to proofs of Theorem 2 and the Wedder-
burn result implying Theorem 3.
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THEOREM 3. Let D contain a generalized quaternion algebra Q.
Then D=QXR, where R is also a generalized quaternion algebra.

3. On Quartic Fields. Let X be a quartic field over F. If
X = F(x), so that x generates X, then x is called a primitive quan-
tity of X, otherwise imprimitive. Similarly X is primative if it
contains no imprimitive quantities not in F and otherwise is
imprimitive. The group of X is primitive or imprimitive according
as X is primitive or imprimitive.* In a quartic field X the only
possible sub-fields except F are those of order two. Hence X is
imprimitive if and only if it has a quadratic sub-field.

If x is any primitive quantity of X and the minimum equation
of xis ¢(w) =0, then Xis knownT to be imprimitive if X contains
an xy#x and yet satisfying ¢(w) =0.

Of particular importance for us are quartic fields X with group

(1) Gy = (I, 51, 2, 53), s = 582 = s = I, $3 = 5152 = $351.

Obviously the above group is the direct product of two cyclic
groups of order two. Correspondingly, X is the direct product of
two quadratic fields. Conversely, every direct product of two
non-equivalent quadratic fields is a quartic field with group G..
We shall prove that every normal division algebra D of order
sixteen over D contains two quadratic sub-fields F(#«), F(v) such
that uv =vu, while v is not in F(u). It follows that the sub-field
F(u, v) of the division algebra D is the direct product of F(u)
and F(v) and has group G.

4. The Existence of a Quadratic Sub-Field of D. We shall first
prove the following lemma.

LeEMMA. Let x in D have
(2) ¢(w)Ew4+aw3+Bw2+7w+6:O, <a)"')6inF)’

as tts mintmum equation and let Y be a quartic field such that

3) ¢(w) = B-4
where
4) A =w?— thw+ s;, B=w?— tow+ 52

* See Weber's Algebra, vol. 1, p. 505 and p. 525 for the preceding results.
t See Netto's The Theory of Substitutions, p. 198.
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have coefficients ti, ts, s1, s2in Y. Then one of X =F(x) and Y is
imprimitive.

For let W be an extension of Y in which A and B are reduc-
ible. Then A= (w—&)(w—&),B=(w—§&y) (w—E&), where &y, - - -,
£,arein Wso that the fields X = F(x), F(£;) are equivalent quar-
tic fields. If s;=N\ in F, then &&=\, &= 128 is in F(&y).
Hence F(£1) and F(x) are imprimitive by the argument of §3.

If sa+s1=N\ in F, then, since sss1=6 in F, s; is a root of
w?—Aw+06=0 and, since s; is not in F, Y containing s; is im-
primitive. Hence let y =s:-+s; be not in F.

But y==£&+6¢& is well known,* by elementary theory of
quartic equations, to be a root of the resolvent cubic of ¢(w) =0.
Hence F(y) cannot have order four. Hence Y is imprimitive.
Our proof of the lemma is complete.

Let now x be in D and X = F(x) be a primitive quartic field.
By Theorem 2
(3) () = (0 — (0 — ) (w0 — ) (0 — x1), 21 = 7w,
where x,, x3, x4 are in D. Also

¢(w) =B-A, B=(v— 2)(0 — x3) = w? — faw + s,
A= (w— x)(0— %) = @?— tw+ s1.

(6)

Using (6) and (2) and comparing coefficients of w?, w?, w’=1,
respectively, we obtain

) b+t = — o, 52+ 51+ bty = B, s251 = 6.

By substituting for s; and f; from the first and third parts of (7)
in its second part we obtain

(8) st 451 =0+ tia + 82,

Suppose that both F(s;) and F(t) are primitive. Then any
quantity of each field generates the field and the two fields are
equal if and only if they have a quantity not in F in common.
But #2+4at;+8 is not in F and is in F(s1) by (8). Hence F()
= F(s1) = Y contains all of sy, s, 1, #2 by (7). But X is a primitive
field by hypothesis. Hence, by the above lemma, ¥ is imprimi-
tive, a contradiction.

* See L. E. Dickson, First Course in the Theory of Equations, p. 51. Thus
the above essential point of our proof is a very elementary result.
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Hence at least one of F(sy), F(#) is imprimitive and contains a
quadratic sub-field, or one of these fields is a quadratic field,
or one of them coincides with F. But if either #,=x+4x; or
s1=x9x1 is in F, then X contains a root xsx; of the minimum
equation of x; and is imprimitive, a contradiction.

Hence if x is in D butnot in F, then either F(x) isa quadratic
field, or F(x) is imprimitive and contains a quadratic field, or
F(x) is primitive but either F(s;) or F({;) contains a quadratic
field. We have thus proved the following theorem.

THEOREM 4. Every normal division algebra of order sixteen over
F contains a quadratic sub-field.

The above proof is certainly a great simplification of my
earlier proof of the same theorem requiring about four printed
pages. We shall also obtain a simpler proof of the final result, a
consequence of Theorem 4.

5. The Desired Determination. Let D be a normal division
algebra of order sixteen over F. By Theorem 4, D contains a
quadratic sub-field U= F(u), u?=p in F. But (—u)2=p so that,
by Theorem 1, —u=yuy™!, where y is in D. From yu= —uy
it follows that y?u=wuy?. If y?=X\ in F, algebra D contains the
generalized quaternion algebra Q=(1, «, y, uy) over F and, by
Theorem 3, D=QXR, where R=(1, v, 2, v2), s2v= —vz, v>=¢ in
F. In this case D contains the quartic field F(u, v) with G4 group
as desired. Let then y2=9 not in F. If v is a primitive quantity
of Y= F(y), then Y is a polynomial in 2. But y? is commutative
with # while ¥ is not commutative with ». Hence v is imprimi-
tive, vu =uw, F(v) is a quadratic field. Also « is obviously not in
F(v) <F(y) so that F(u, v) is a quartic field with group G4. The
following theorem is thus proved.

THEOREM 5. Every normal division algebra of order sixteen
over any non-modular field F contains a quartic sub-field with
group Ga.

THE UNIVERSITY OF CHICAGO



