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ON THE ZEROS OF CERTAIN POLYNOMIALS 
RELATED TO JACOBI AND LAGUERRE 

POLYNOMIALS* 
BY W. LAWTONf 

1. Introduction. We consider the polynomials defined as fol­
lows: 

dn 

(1) ƒ»(*, a, j8) = xl-«(\ - x)l-+ [*»+a-i(i - x)*+*-1], 
dxn 

dn
 r 

(2) Ln(x, a) s xl~aex [er*xn+a-l\, 
dxn 

where a and /8 are arbitrary real numbers. If a, j3>0, they are 
known respectively as Jacobi and Laguerre polynomials, satis­
fying the following orthogonality relations : 

f ^ " K l - Xy-lJm{x)Jn(x)dx = 0 , 
Jo 

ƒ• 
Jo 

e-xxa~lLn(x)Lm(x)dx = 0, 
ro 

(a, ft > 0; m, n = 0, 1, • • • ; m ^ n). 

From these relations it can be shown that all the zeros of the 
functions Jx(x, a, /3) and Ln(x, a) are real, distinct, and lie 
respectively inside (0, 1), (0, oo). 

The following differential equations are also well known : 

(3) *(1 - *)/»" (*, a}6) + {a- (a + j8)*} ƒ»' (*, a, |8) 

+ fi(* - 1 + a + $)Jn = 0, (a, ]8 > 0), 

(4) XJLW" (X, a) + (a — #)Zn (x, a) + nLn(x, a) = 0. 

Since (3) and (4) represent identical relations between the co­
efficients of Jn(x, a, j8) and Ln(x, a) respectively which are poly­
nomials in a, j3 or in a respectively, we conclude that the 
differential equations still hold, if a, /3^0. 

* Presented to the Society, March 26, 1932. 
t Harrison Fellow in Mathematics, University of Pennsylvania. 
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The object of this paper is to study the nature of the zeros of 
these polynomials when a, |3:g0. In this case the orthogonality 
relations do not hold since the integrals involved do not exist. 
Consequently, the aforesaid conclusion about the zeros also 
fails. M. Fujiwara* has shown that if p and q are positive inte­
gers such that 

0<a+p<l, 0 < | 3 + 2 < l , 

then J nix y a, ]8) has at least n — p — q zeros in (0, 1). 
In what follows these results have been improved and given 

in a more precise form (Theorem 2) and similar results derived 
for Ln(x, a) (Theorem 1). 

2. On the Zeros of Lnixt a) for a^O. 

THEOREM 1. (i) If pis a positive integer such that 0 <a+p ^ 1, 
Ln(x, a) for n^p, has exactly n — p zeros inside (0, oo); (ii) more-
over, if a+p = 1, Ln(x, a) has an additional zero at x = 0 of mul­
tiplicity p. 

PROOF. CASE 1. 0<<x-\-p<\. First, by applying Fujiwara's 
method, we show that Lw(#, a) has at least n — p zeros inside 
(0, oo ). By (2) we write 

dn\// 
xr^er'Lnix, a) = , (\p(x) = xn+a-le~x), 

dxn 

x^p-h^Lnix, a)xmdx = I xm+* dx. 
o Jo dxn 

(These two integrals exist for a+p — 1 >0.) Furthermore, if 
n>rn+p, integration by parts shows at once that the right-hand 
member vanishes. Hence 

(5) I tf**-ler*Ln(x9 a)xmdx = 0, (tn = 0, 1, • • • , n — p - 1). 
Jo 

Suppose, first, that Ln(x, a) has ri<n — p) zeros in (0, oo): 

ai, a2, • • • , ar. 

Then 

* M. Fujiwara, On the zeros of JacoWs polynomials; Japanese Journal of 
Mathematics, vol. 2 (1925), pp. 1-2. 
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Ln(x, a) = (x — a{)(x — a2) • • • (x — ar)Pn-r(x) = R(x)Pn-r(x)1 

and (see (5)), 

f X^-h-vR^Pn-rWdx = 0 , 

which is impossible, since Pn-r(x) does not change sign in (0, oo ). 
Consequently 

(6) r ^ n — p. 

Secondly, we show that 

r S n — p. 
Write 

n 

Ln(Xy a) = 2j8i**. 

Substituting in (4), we have 

(7) (i + l)(a + i)Pw = (i - ft)fr, (t = 0, 1, • • • , ft - 1). 

Since 0 < a + £ < l , 

a + i < 0 for 0 ^ i ^ £ - 1; 

a + i > 0 for p ^ i ^ ft. 

Thus, j30, ft, • • • , j8p have like signs, jSp, jS-p+i, • • • ,/3W have alter­
nate signs, and the sequence {j3»}, (i = 0, 1, • • • , ft), present 
exactly ft — £ variations in sign. Hence, by Descartes' rule, 
Ln(x, a) has at most n — p zeros in (0, oo ), which, combined with 
(6), yields the desired conclusion, r^n—p. 

CASE 2. a+p = l. From (7) we have 

ft = / 3 i = • • • =fr>-i = 0; & 5*0. 

Thus, Lw(x, ce) has a zero of multiplicity p a t x = 0. 
To show that the remaining zeros lie inside (0, oo), we write 

(see (5)) 

Ln(x, a) ss Rn-P(x, a)xp] J a^+^V^-Rn-pCff, a)#md# = 0, 
Jo 

(m = 0, 1, • • • , ft — p — 1). 

Employing a similar argument to that used in Case 1, we con­
clude that Rn-p(x, a) has at least ft — p zeros inside (0, oo) and 
therefore exactly n — p such zeros, since it is a polynomial of de­
gree n — p. 
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3. On the Zeros of Jn(x,a, 13) for a, P^O. 

THEOREM 2. (i) If p and q are positive integers such that 
0<a+p^l, 0<P + q^l, then Jn{x, a, /?) for n^p+q + 1 has 
exactly n — p — q zeros inside (0, 1). (ii) If a+p = l, Jn(x, a, P) 
has an additional zero of multiplicity p at x = 0; if P+q — 1, 
Jn(x, a, P) has a zero of multiplicity qat x = l. 

PROOF. CASE 1. 0<a+p<l; 0<P+q<l. In view of M. 
Fujiwara's results, it is sufficient to show that the number of 
zeros of Jn(x, a, P) inside (0, 1) can not exceed n — p — q. This 
will be done in several steps. 

First, we shall show that Jn(x, a+1, P) has at least one more 
zero inside (0, 1) than Jn(x} a, P). We get, making use of (1) and 
of the identity 

dn dn\[/ dn-ty 
[\[/x\ = x h n , 

dxn dxn dx*1"1 

dn~l 

(8) Jn(x, a + 1, p) = Jn(x, a, P) + nir*(\ - x)-^1- 4>{x), 
dxn~l 

{<t>(x) = xn+«-\\ - x)^-1). 

Employing the abbreviated notation 

Jn(x, a + 1, P) — Jn(x, a, P) s Tn(a) 

and differentiating (8), we get, making again use of (1), 
(9) w(l - x)Jn(x,a,P) = [a - (a + p - l)x]Tn(a) + x(l - x)Tj (a). 

Differentiating (9) and using (3) written for Jn(x, a, P) and for 
Jn(x, (x+1, (3), we find 

(10) (» - 1 + a + P) [Jn(x, a + 1, p) - Jn(x, a, P) ] 

= {x — \)Jn (xy ay P). 

We note that, if n^p + q+1, then n — l+a+P>0. 
Let Xi and xi+i(>Xi) be two consecutive zeros of Jn(x, a, P) 

inside (0, 1). Then, comparing the signs of Jn(x, a, P) and of 
Jn(x,a + l,P) in (10) for and Xi+i, we conclude that there 
exists at least one zero of Jn(x, a + 1, P) between Xi and Xi+i. 

Next, if Xk be the right-most zero of Jn(x, a, P) inside (0, 1), 
we can show that there exists a zero of Jn(x, a + 1, P) inside 
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(xky 1). In fact, Jn( l , a, j S ^ O (as we shall show later), say 
> 0 ; hence, since 

/»'(**, a, ]8) > 0 , J n ( l , a + \, j8) > 0 , 

it follows that 

/n(**,a + l , j8)<0 

by (10). 
In a similar fashion, if #i is the left-most zero of Jnix, a, ]8) 

inside (0, 1), there exists a zero of Jnix, a + 1, j8) inside (0, #1). 
Combining the above results, we conclude that Jnix, a + 1, j8) 

has at least one more zero; hence Jnix,a+p, ft) has at least £ 
more zeros inside (0, 1) than Jnix, a, j8). 

Consider now /»(#, j8, «+ƒ>)• The obvious relation 

(11) / n ( * , j8, a + p) = ( - 1) V n ( l - x, a + p, 0) 

shows that Jnix, j8, a+p) has the same number of zeros inside 
(0, 1) as Jnix, a+p, ]8). We come now to the final step in our 
proof. 

Suppose J nix y a, j8) has n—p—q+k zeros inside (0, 1), where 
k>0. By the preceding argument Jnix, a+p, j8) and therefore 
Jnix, j8, « + £ ) have each at least n — q+k zeros inside (0, 1). 
Repeating the argument, we see that Jnix, P+q, a+p) has at 
least n+k>n zeros inside (0, 1), which is impossible if k>0. 
Consequently, k = 0, and our theorem is thus proved for Case 1. 

We can easily prove what was tacitly assumed in the above 
argument, that Jnix, a, )8) has no multiple zeros inside (0, 1). 
Suppose Jnix, a, fi) has a multiple zero at Xi, so that 

Jnixi, a, |8) = Jn ixi, a, |8) = 0 ; 
from (3) 

Jn"ixi,a,l3)=Jn"'ixi,a,l3)= • • • = 0 . 

Another tacit assumption that Jnix, a, j3)^0 for x = 0, 1 will 
be revealed in the discussion below. 

REMARK. The same results hold, if 0<a+p<l and (3>0 
(here g = 0) or if 0<l3+q<l a n d a > 0 (here£ = 0). 

CASE 2. a+p = \, 0<p+q<l. Writing 
n 

Jnix, a, j8) = J^yiX* 
t~0 

and substituting in (3), we obtain 
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{n(n-l + a + p)-i(i-l + a + p)}yi+(i+l)(a+i)yi+1 = 0, 

(i = 0, 1, . - . , » - 1). 

Hence 
7o = Ti= * • * = 7 P - I = 0 ; 7 P ^ 0 

(since a+p — 1 = 0), which shows that x = 0 is a zero of multi­
plicity p of Jn(x, ex, /3), so that 

Jn(x} a, |8) =^p2?n-p(^, oc} |8). 

In the same manner, as we showed for Ln(x, a), we can show 
that Rn-pix, ce, j8) has at least n — p — q zeros inside (0, 1). To 
find an upper limit for the number of these zeros, we substitute 
in (10) 

J nix, a, fi) s Rn_p(x, a, @)xp, 

Jn(%9 Oi + 1, 0) = Rn^p+l(x, a + 1, jS)^-"1 , 

and obtain 

(12) (n - 1 + a + p)Rn^p+1(x} a + 1, j8) = *(* - l ) i C P ( # , a, /3) 
+ [(n + p - l + a + p)x- p]R»-p(x, a, 0). 

By an argument similar to that given before, (12) shows that 
Rn-p+i(x} ce + 1, j8) has at least one more zero inside (0, 1) than 
Rn-P(x, a, j8). Suppose now Rn-P(x, a, j8) has n—p—q+k zeros 
inside (0, 1), where k>0. Then Rn(x, a+pr j8) has at least 
n — q+k zeros inside (0, 1). But 

Rn(x, a+p, 0)=Jn(x, a+p, 0) 

has exactly w — q zeros inside (0,1), as was shown in Case 1. Thus, 
k =0 , and Theorem 2 is established for Case 2. 

CASE 3 . 0 < a + £ < l , j 8 + < z = l. From the above argument (see 
(11)) we can state immediately that Jn(x, ce, j8) has a zero at x = 1 
of multiplicity g, and exactly n — p — q zeros inside (0, 1). 

CASE 4. ce+£=/3+g = l. I t follows from Cases 2 and 3 that 
Jn(x, ce, j8) has zeros at x = 0, 1 of multiplicity ƒ>, q respectively. 
Writing 

Jn{x, a, p)=xp(l-x)<iRn-P-q(x, ce, /3) 

and applying M. Fujiwara's method to Rn-p-q(x, a, /3), we 
readily show that Rn-p-Q (x, a, (S) has at least n—p — q zeros 
inside (0, 1); hence, being of degree n—p — q, it has exactly 
n — p — q such zeros. 
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4. Remarks, (i) The fact that Ln(x, a) has exactly n — p zeros 
inside (0, oo ) also follows by considering it as a limiting case of 
Jn(x, a, j8). Suppose /3>0, 0<a+p^l, and consider the trans­
formation Xi=/3x. We know that the polynomial 

Jn(xh a, /3) = JnOi/jS, a, (3) 

has exactly h — p zeros inside (0, /5). On the other hand, by (1), 

/ xi\-fi dn r / a i \ n + H 

«"""»-""•('-7) z^L^O-j) J' 
and since 

di r / » Y**3 1 <** r 

it follows from (2) that 

lim Jn(%h a> P) ^ ^n(#, Où) . 

(ii) From the argument employed in Section 2, we conclude 
that inside (0, 1) the zeros of Jn(x, ex + 1, j8) separate those of 
Jn(x, a, jS) and conversely. The same is true of Jn(x, a, P) and 
Jn(x, a, ]8 + l) and of Ln(ff, a) and Ln(x, ce + 1), inside (0, 1), 
(0, QO), respectively. 

(iii) The results of Section 2 evidently hold for any finite 
interval (a, 6), the polynomials Jn(x, a, P) being defined as fol­
lows: 

dn 

Jn(x,a,P) = (x - ay-«(b - x)1-? [(x - a)n+«-l(b - tf)^-1]. 

(iv) The aforesaid property of the zeros of the orthogonal La-
guerre and Jacobi polynomials (a, j8>0), that they lie inside 
(0, 00), (0,1) respectively, follows at once from Theorems 1 and 
2, if we make there p = 0, q = 0. 
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