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cones projecting C and C" from (0, 0, 1, 0) have contact of at 
least order n + 1. Moreover, by changing this vertex to the point 
(a, b, 1,0) it is easily shown by a method similar to that used in 
the general case that the cones projecting C and C' from any 
point in the osculating plane have contact of order n + 1. In 
other words, this special case arises when the principal plane 
coincides with the osculating plane. 
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1. Introduction. In Menger's studies in metrical geometry* 
considerable attention is given to the rectification of the simple 
arc and various definitions of the length of such an arc are dis­
cussed. With the definition of arc-length it is then possible to 
give conditions for the "Konvexifizierbarkeit" of a compact 
metric space (p. 96) and for the existence of a geodetic arc in a 
compact metric space (p. 492). Both theorems involve the as­
sumption of the existence of a rectifiable arc between each pair 
of points. I t is intended in this paper to show that these results 
and some others are due to space properties which are of a more 
general nature, at least formally, and which suggest possible 
further studies. 

2. Intrinsic Distance. If a and b are two points of a metric 
space Z, we let ab denote the distance between them. A finite 
set of points {a,i) such that a0 = a, an = b, and every aiai+i<h 
will be called a 6-chain from a to b, and aai+aia2 + • • -+an-ib 
will be called its length. If we set h(a, b) equal to the lower 
bound of the lengths of all S-chains from a to &, it is clear that 
this number exists if there is any such chain, that it is greater 
than or equal to ab, and that it increases monotonely as S—*0. 
The upper bound of h(a, b) for all values of S is called the 
intrinsic distance] from a to & and is denoted by I (a, b). 

* Untersuchungen uber allgemeine Metrik, Mathematische Annalen, vol. 
100, pp. 75-163 and vol. 103, pp. 466-501. See also Annals of Mathematics, 
vol. 32, pp. 739-746. 

f This turns out to be essentially the same thing as Menger's "geodetic dis­
tance" loc. cit., p. 492. See §§4 and 7 below. 
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For l(a, b) to exist, finite or infinite, it is necessary and suffi­
cient that Z be p-connected between a and b for every p > 0 . 
If l(a, b) is always finite, it is clear that the metric axioms are 
satisfied. In general the infinite case will be excluded and the 
metric space Z will be called intrinsically metric if l(a, b) exists 
and is finite for every pair of points. The definition gives at 
once the following theorem. 

THEOREM 1. For a metric space to be intrinsically metric it is 
necessary and sufficient that f or each pair of points a and b, some 
G > 0 , and every 5 > 0 , there is a ô-chain from a to b of length less 
than G. 

It should be noted that the value of G depends on a and b. 
Even if the metric space Z is compact, there needs be no upper 
bound to G as a and b run over Z. For example let Z be the union 
of a segment ab and an enumerable set {d} of arcs from a to 
b, rectifiable, having only the points a and b in common and 
converging to ab, and so constructed that on each d there are 
points ai and bi such that l(a, a»), l(a>u bi), and l(biy b) all ap­
proach infinity with i. Then the number d associated with a* 
and bi also approaches infinity. 

3. THEOREM 2. Let C be a simple arc from a to b. Then the 
intrinsic distance from a tob in C is the length of the arc. 

PROOF. If 5 is the length of the arc, it is by the classical de­
finition the upper bound of the lengths of all finite chains 
ordered from a to b. As h(a, b) is the lower bound of the lengths 
of all ô-chains from a to b, we have for every S, h(a,b) ^ s; 
whence l(a, b) ^s. 

For any e > 0 there is an ordered chain {a*} of length not less 
than G— e/2, where G = s iî s is finite, and G is arbitrarily large 
if 5 is infinite. These points divide C into n arcs {C*}, where 
Ci = aidi+i. I t follows from the properties of the simple arc 
that, for any positive <r< e/2 and for a small enough positive ô, 
no two consecutive points of any ô-chain K = {cr} from a to b 
lie on non-consecutive arcs { Ci} and, if two consecutive points 
cr and cr+i lie on consecutive arcs C%-\ and d, aiCr<o-/(2n) and 
aiCr+i<<r/(2n). 

Hence, if cr~i denotes the last point of K in CV_i and Ct+i 
denotes the first point of K following cr~i and lying in CVfi, we 
can easily show that the subchain cr, cr+i, • • * , ct lies wholly in 
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Ci, crai<(r/(2n)} ctai+i<cr/{2n), and the length of this sub-chain 
is at least a# ; + i — <r/n. Consequently the length of K is at least 
Saitti+i — cr^G— e. Thus for 8 small enough /«(a, &)^G— e and 
so /(a, b)^G — e. Hence /(a, &) = s if 5 is finite and it is infinite if 
5 is infinite. 

4. THEOREM 3. Let Z be a metric space and let there be a simple 
arc of finite length between the points a and b. Then l(a, b) is finite 
and does not exceed the length of the given arc. 

PROOF. Let C be the given arc and let s be its length. For 
any positive b there is an integer n such that s/n<b. Since C is 
rectifiable, it can be divided into n arcs each of length s/n by 
points {ai}. These points, together with a and b, form a S-chain 
of length not more than s. It follows at once that /(a, b)^s-

COROLLARY. The existence of a rectifiable arc between each pair 
of points of a metric space is sufficient to make the space intrinsic­
ally metric. 

5. THEOREM 4. Let Z be a metric W-space* and f or the points 
a and b let l(a, b) be finite. Then there is a point c such that 
l(a,c)=l(c,b)=l(a,b)/2. 

PROOF. Let {e*} and {ô*} denote descending sequences of 
positive numbers converging to 0. By the definition of /(a, b) 
there is for each i a S4-chain d from a to b, whose length 
L(d) satisfies the relation \l(a, b)—L(d)\ <€*. Clearly some 
point Ci of the chain d breaks it up into two chains Ei and Fi, 
which join a and cif and Ci and b} respectively, and satisfy the 
relations 

| L(Ei) - L(Çi)/2 | < «,; | Z(F<) - L{C%)/2 \ < Si. 

Consequently both L{E%) and L(F{) differ from l(a, b)/2 by less 
than ei + ôi. 

As all the points of these chains lie within a finite distance 
from a, there is a sub-sequence for which {d} converges to a 
point c. Let rji be the larger of the two numbers bi and 2cci. 
Then the sum of Ei and the point c forms an r^-chain from a to 
c of length less than l(a} b)/2 + €i + 27]i. But rji-^0 as i—>oo. 

* This is a metric space in which the Bolzano-Weierstrass principle that 
every bounded infinite set has at least one limiting point is valid. In such a 
space every bounded closed set is compact. 
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Consequently l(a, c) is finite and not larger than l(a, b)/2. In 
like manner l(c, b) ^ / (a , b)/2. 

Since we know that for any three points l(a, c) +l(c, b) ^ l(a, b), 
these last relations give the theorem. 

COROLLARY. A metric W-space which is intrinsically metric is 
intrinsically convex. 

6. THEOREM 5. Let Z be a metric W-space and f or the points 
a and b let l(a, b) be finite. Then Z contains a simple arc joining 
a and b. 

PROOF.* By §5 there is a point c such that lia, c) =l(c, b) = 
l(a, b)/2. Again there is a point d such that l(a, d) =l(d, c) = 
l(a, c)/2=l(a, b)/4. Now /(a, d)+l(d, b)^l(a, 6), whence 
Kd, b)^il(a, b). But l(d, b)gl(d, c)+l(c, &)=f/(a, b). Thus 
l(d, b) = f/(a, b). By mathematical induction we get an enumer­
able set of points {x} such that, if we take l{a, b) as unity and 
let / vary from 0 to 1, there corresponds uniformly one point x 
to each dyadically rational value of /, /(a, x) =t, and l(x, b) = 
1—t, while for tf >t, say, also /(a, xf)=l(a, x)+l(x, x') and 
l(x, b) =l(x, x')+l(x', b). 

Now let r be any value of t, {ti} be a sequence of dyadic 
rationals approaching r, and Xi correspond to ti. Since every 
bounded closed sub-set of Z is compact, we have a sub-sequence 
of points {xi} converging to a point c. Now Z(a, c )^ l im 
l(a, Xi) =T and l{c, b) <lim /(#*, b) = 1—r. Then l(a, b) ^ / (a , c) + 
l(c, b)^l(a, b); whence l(a, Xi)-+l(a, c) and l(xi, b)—>l(c, b). 
Let. {// } be another sequence of dyadic rationals approaching 
r, let yi correspond to t{, and y%"^>c\ where C'T^C. Then T = lim 
l(a, yi)=l(a, c') and 1—r = lim l{y^ b)=l(c', b). For some 
sub-sequence l(a, Xi)^>l(a, yi) or l{a, yi)^l(a, Xi), say the 
former. For these points Z(a, yi) =l(a, Xi) +l(xi, yi). Now l(a, c) = 
l(a, c'), which shows that l(xi} yi)—>0. Hence #»;y»—»(), which is 
impossible unless c = c'. Thus for every sequence {ti} converg­
ing to r, the corresponding sequence {xi} converges to a 
single point c, for which l{a, c)=r and l(c, b) = l—r. 

Let C be the union of the sets {x} and {c}. Then C is in a one 
to one correspondence with the set O ^ / ^ l . Let x now denote 

* This proof is much like that given by Menger (loc. cit., p. 88) for the ex­
istence of a geodetic arc in a complete convex space. See also pp. 492-493. 
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any point of C and x=f(t). Let r be any value of /, {ti} be any 
sequence converging to r, and Xi=f(ti). By the previous para­
graph there is for any €>0 a dyadic rational t/ such that 
I*»-*/ |<€/2*and, ifyi=f(t{), x&iKe/l*. Then / / - > r a n d the 

sequence {3/»} converges to c=f(r). Since Xtyi—>0, this gives 
# —*c. Thus ƒ(/) is continuous. 

Since the inverse of x=f(t) is one-valued and the linear in­
terval is compact, the function ƒ(/) defines a homeomorphism 
and so C is a simple arc. 

7. THEOREM 6. Le/ Z be a metric W-space and for the points a 
and b let l(a, b) be finite. Then there is a rectifiable arc from a to b 
of length l(a, b). 

PROOF. By §6 there is a simple arc C from a to b. As seen 
in the proof of §6, there is for each 5 > 0 a S-chain from a to b 
in C of length not more than Z(a, b). Hence l{a, b) in C is not 
more than l(a, b) in Z. I t is of course not less. Then by §3 the 
length of the arc C is /(a, b), which was to be proved. 

8. Examples. If a sub-set M of Z is intrinsically metric, we 
may use the intrinsic distance to define intrinsic separability, 
compactness, closure, etc. Thus a is an intrinsic limiting point 
of M if for every e > 0 there is a point x of M differing from a for 
which l(a, x)<e. Note, however, that separability, etc., in the 
ordinary sense does not imply intrinsic separability, etc. 

EXAMPLE I. Let M be the plane set defined by 0 < x < l , 
y = x sin2 (w/x) and y = 2; x — 0 and x = l , 0 ^ 3 ; ^ 2 . This is closed 
and so compact. I t is intrinsically closed, but not intrinsically 
compact. If the open segment parallel to the x-axis is deleted, 
it is no longer intrinsically metric. 

EXAMPLE II . Let {#;} be a sequence of points converging to 
a point a and {aai} be a set of rectifiable arcs, each of length 1 
and diameter 1/i, and distinct except for the point a. Then 
Z = £/[aai] is compact and locally connected, but it is not 
intrinsically compact. (This example is given by Menger, loc. 
cit., p. 497.) 

EXAMPLE I I I . Let Cbe a Cantor set in the segment O ^ x ^ l , 
and / be the set of complementary intervals. At each point x 
of C erect a perpendicular Hx of length 1. The union of / , C, 
and the segments {Hx} is separable and intrinsically metric, 
but it is not intrinsically separable since the end of any Hx 

is approached intrinsically only by points on Hx. 
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Although these transformations of space effected by the use 
of intrinsic distance seem to make this an artificial and futile 
concept, it should be remembered that, if these were real 
spaces, to a dweller in any one of them the intrinsic distance, 
or something like it, would be the real distance rather than that 
of the higher space containing his world. The various peculiar­
ities illustrated above are due to the absence of a single property 
to which we now turn. 

9. Local Rectifiability. In each of the examples of §8 there is 
a point a for which the relation ax—*0 does not imply that 
l(a, x)~>0. In Example I it is (0, 0), in Example II it is a, and in 
Example III it is any point not on C+ƒ . To meet this difficulty 
we introduce the idea of local rectifiability. 

DEFINITION. A metric space Z is locally rectifiable at a point a, 
if, for every r>0, there is a k>0 such that the relation ab<k 
implies the existence for every 5 > 0 of some h-chain from a to b 
of length less than r. 

The following theorems are easily proved. 

THEOREM 7. A metric space is locally rectifiable at a point a} 

ify and only if, for every r > 0, there is a k > 0 such that the relation 
ab<k implies that l(a, b) <r. 

THEOREM 8. Let Z be a metric W-space which is locally rectifi­
able at a point a. Then for every r>0 there is a k>0 such that, 
if ax<k, there is a rectifiable arc from a to x of length less than r. 

THEOREM 9. In a metric W-space local rectifiability is a 
stronger property than local connectivity. 

The first of these is an immediate consequence of §2. The 
second follows from the first and §7. That local rectifiability is 
a stronger property than local connectivity is a consequence of 
Theorem 8, and that i t is effectively stronger follows from 
Example II of §8. 

10. THEOREM 10. An everywhere locally rectifiable compact 
metric space is uniformly locally rectifiable. 

PROOF. Take a positive r less than half the diameter of the 
space. It is easily seen from Theorem 7 of the previous section 
that for each point a there is a largest positive k for which the 
relation ax<k implies that lia, x) <r. Denote this largest k by 
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kir, a). If the theorem is not true, there is, for some r>0, a 
sequence {ai} converging to a point a for which k(r, a*)—»0. 
But there is a S>0 for which the relation ax<8 implies that 
l(a, x)<r/2. If aai<5/2 and aiX<h/2, a x < 6 . Hence /(a», x) ^ 
/(a, a 4 )+/(a , x ) < r . Thus we have a contradiction, and the 
theorem is valid. 

11. THEOREM 11. If Z is a compact connected metric space 
which is locally rectifiable at each point, it is intrinsically metric. 

PROOF. For r>0 there is, by §10, a k>0 such that for every 
x, the relation xy<k implies that l(x, y)<r. By the Borel 
theorem a finite set of the regions { Vk(x)} * covers Z; let these 
be Vi, F2, • • • , Vn. This set of regions forms a connected chain, 
since Z is a connected set. Hence by §9, Theorem 8, any two 
points of Z can be joined by an arc of length not more than 2nr. 
This, with §4, gives the theorem. 

12. THEOREM 12. Let Z be intrinsically metric. Let Z' have the 
same points as Z, but let the distance in each case be the intrinsic 
distance. For Z' to be homeomorphic with Z it is necessary and 
sufficient that Z be locally rectifiable. 

PROOF. Let Z be locally rectifiable. Then the relation ax—»0 
implies that l(a, x)—>0. But l{a, x) ^ax. Hence the condition is 
sufficient. I t is obviously necessary. 

COROLLARY 1. An intrinsically metric W-space Z can be made 
convex if it is everywhere locally rectifiable. 

This is an immediate consequence of Theorem 12 and §5. 

COROLLARY 2. If Z is compact, connected, and everywhere locally 
rectifiable, it can be made convex. 

COROLLARY 3. Let Z be a metric W-space in which any two 
points can be joined by a rectifiable arc and such that for each 
€ > 0 and each point a there is a 8 = (j)(a, e) > 0 such that, if ax< ô 
there is an arc ax of length less than e. Then Z can be made convex. 

For Z is intrinsically metric and locally rectifiable at every 
point. This corollary is a slight generalization of Menger's 
theorem (loc. cit., p. 96). 

* This notation means the set of points of Z whose distances from x are less 
than k. 
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13. Intrinsic Continuity. I t is evident that the properties of 
being intrinsically metric or locally rectifiable are not always 
preserved under an ordinary homeomorphism. The question 
naturally arises as to what kind of a homeomorphism does pre­
serve such properties. The following provides a rather obvious 
answer, which may, however, suggest further avenues of study. 

Let T = {/} and Z = {x} be metric spaces and x = ƒ(/) be 
one-valued. For a point a in T whose image in Z is b and for 
each €>0, let there be a 5 > 0 such that l(a, t) <8 implies that 
l(b, x) <e. Then ƒ(/) is called intrinsically continuous at a. 

THEOREM 13. Let T= {t} and Z= {x} be homeomorphic metric 
spaces and x=f(t) define the correspondence. If T is locally 
rectifiable at a and ƒ(/) is intrinsically continuous at a, then Z is 
locally rectifiable at b=f(a). Conversely, if T is locally rectifiable 
at a and Z is locally rectifiable at b =f(a), then f(t) is intrinsically 
continuous at a. 

The direct theorem follows from the fact that each of the 
following statements implies the next: bx-*0; at—>0; l(a, t)~->0; 
l(b, x)—»0. The converse follows from a similar chain: /(a, t)—>0] 
at-*0; bx-^0; l(b, x)-*0. 

Y A L E UNIVERSITY 


